精英家教網 > 高中數學 > 題目詳情
(12分)已知直三棱柱中,,點M是的中點,Q是AB的中點,
(1)若P是上的一動點,求證:;
(2)求二面角大小的余弦值.
(2)

試題分析:(1)取BC的中點E,連接EQ,因為Q為AB的中點,所以EQ//A1C1,因為AC,此三棱柱為直三棱柱,所以,所以,又因為BC=CC1=1,所以四邊形BB1C1C為正方形,所以,所以,所以.
(2)過C作CN于N點,過N作作,連接FC,
就是二面角大小的平面角,
中,
所以二面角大小的余弦值為.
點評:在證明直線與直線垂直時可考慮使用線面垂直的性質定理證明直線垂直另一條直線所在的平面即可.求二面角關鍵是找出或做出其平面角,常用做平面角的方法就是三垂線定理.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)如圖,在三棱柱中,側棱與底面垂直,,,點分別為的中點.
(1)證明:平面;
(2)求三棱錐的體積;
(3)證明:平面.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題滿分10分) 在長方體中,分別是的中點,
,.
(Ⅰ)求證://平面;
(Ⅱ)在線段上是否存在點,使直線垂直,
如果存在,求線段的長,如果不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,直四棱柱中,底面是直角梯形,,,

(1)求證:是二面角的平面角;
(2)在上是否存一點,使得與平面與平面都平行?證明你的結論.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題滿分12分)如圖,在三棱錐中,
底面,點
分別在棱上,且
(Ⅰ)求證:平面
(Ⅱ)當的中點時,求與平面所成的角的正弦;
(Ⅲ)是否存在點使得二面角為直二面角?并說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題滿分12分)如圖,在四棱錐中,底面為平行四邊形,,,中點,平面, ,
中點.

(1)證明://平面;
(2)證明:平面;
(3)求直線與平面所成角的正切值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知正三棱錐V-ABC,其側棱VA=4,底邊正三角形邊長AB=,其主視圖和俯視圖如下圖所示,則其左視圖的面積是                        .

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

如圖是一個物體的三視圖,則此三視圖所描述的物體是下列幾何體中的(    )

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

若某幾何體的三視圖(單位:cm)如圖所示,則此幾何體的體積等于__________  

查看答案和解析>>

同步練習冊答案