【題目】設(shè)點(diǎn),動圓經(jīng)過點(diǎn)且和直線相切,記動圓的圓心的軌跡為曲線.

(1)求曲線的方程;

(2)設(shè)曲線上一點(diǎn)的橫坐標(biāo)為,過的直線交于另一點(diǎn),交軸于點(diǎn),過點(diǎn)的垂線交于另一點(diǎn).若的切線,求的最小值.

【答案】(1) ;(2) .

【解析】試題分析:(1)根據(jù)拋物線的定義,求出拋物線的解析式即可;(2)求出直線的方程,求出的坐標(biāo),聯(lián)立方程組,求出的坐標(biāo),求出直線的斜率,得到關(guān)于的不等式,求出的范圍即可.

試題解析:(1)過點(diǎn)作直線垂直于直線于點(diǎn),由題意得,

所以動點(diǎn)的軌跡是以為焦點(diǎn)、直線為準(zhǔn)線的拋物線.

所以拋物線的方程為.

(2)由題意知,過點(diǎn)的直線斜率存在且不為0,設(shè)其為.

,當(dāng),則.

聯(lián)立方程,整理得: .

即: ,解得.

,而,∴直線斜率為.

聯(lián)立方程,

整理得:

即: ,

解得: ,或.

.

而拋物線在點(diǎn)處切線斜率: ,

是拋物線的切線, ∴

整理得,

,解得 (舍去),或,∴.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(其中, 為常數(shù), 為自然對數(shù)的底數(shù)).

(1)討論函數(shù)的單調(diào)性;

(2)設(shè)曲線處的切線為,當(dāng)時,求直線軸上截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙等五名奧運(yùn)志愿者被隨機(jī)地分到A,B,C,D四個不同的崗位服務(wù),每個崗位至少有一名志愿者.
(1)求甲、乙兩人同時參加A崗位服務(wù)的概率;
(2)求甲、乙兩人不在同一個崗位服務(wù)的概率;
(3)設(shè)隨機(jī)變量ξ為這五名志愿者中參加A崗位服務(wù)的人數(shù),求ξ的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我市某礦山企業(yè)生產(chǎn)某產(chǎn)品的年固定成本為萬元,每生產(chǎn)千件該產(chǎn)品需另投入萬元,設(shè)該企業(yè)年內(nèi)共生產(chǎn)此種產(chǎn)品千件,并且全部銷售完,每千件的銷售收入為萬元,且

(Ⅰ)寫出年利潤(萬元)關(guān)于產(chǎn)品年產(chǎn)量(千件)的函數(shù)關(guān)系式;

(Ⅱ)問:年產(chǎn)量為多少千件時,該企業(yè)生產(chǎn)此產(chǎn)品所獲年利潤最大?

注:年利潤=年銷售收入-年總成本.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}為等比數(shù)列,其前n項(xiàng)和為Sn , 已知a1+a4=﹣ ,且對于任意的n∈N*有Sn , Sn+2 , Sn+1成等差數(shù)列;
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)已知bn=n(n∈N+),記 ,若(n﹣1)2≤m(Tn﹣n﹣1)對于n≥2恒成立,求實(shí)數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中, 平面, 分別為的中點(diǎn), 是邊長為2 的正三角形, .

(1)證明: 平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解小學(xué)生的體能情況,抽取了某校一個年級的部分學(xué)生進(jìn)行一分鐘跳繩次數(shù)測試,將所得數(shù)據(jù)整理后,畫出頻率分布直方圖(如圖),已知圖中從左到右前三個小組的頻率分別為 0.1,0.3,0.4,第一小組的頻數(shù)為 5.

(1)求第四小組的頻率;
(2)若次數(shù)在 75 次以上(含75 次)為達(dá)標(biāo),試估計該年級學(xué)生跳繩測試的達(dá)標(biāo)率.
(3)在這次測試中,一分鐘跳繩次數(shù)的中位數(shù)落在哪個小組內(nèi)?試求出中位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,直線的參數(shù)方程為,曲線的極坐標(biāo)方程為.

(1)寫出直線的直角坐標(biāo)方程和曲線的普通方程;

(2)求直線與曲線的交點(diǎn)的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】先后2次拋擲一枚骰子,將得到的點(diǎn)數(shù)分別記為a,b.
(1)求直線ax+by+5=0與圓x2+y2=1相切的概率;
(2)將a,b,5的值分別作為三條線段的長,求這三條線段能圍成等腰三角形的概率.

查看答案和解析>>

同步練習(xí)冊答案