函數(shù)f(x)的定義域?yàn)椋?∞,1)∪(1,+∞),且f(x+1)為奇函數(shù),當(dāng)x>1時(shí),f(x)=2x2-12x+16,則方程f(x)=m有兩個(gè)零點(diǎn)的實(shí)數(shù)m的取值范圍是( 。
分析:根據(jù)f(x+1)為奇函數(shù),以及x>1時(shí),f(x)=2x2-12x+16,求得x<1時(shí),f(x)的解析式.由題意可得,直線y=m與函數(shù)f(x)圖象交點(diǎn)個(gè)數(shù)為2,數(shù)形結(jié)合求得實(shí)數(shù)m的取值范圍.
解答:解:∵f(x+1)為奇函數(shù),可得 f(-x+1)=-f(x+1),即 f(-x+1)+f(x+1)=0,
故函數(shù)f(x)圖象關(guān)于點(diǎn)(1,0)對(duì)稱,∴f(x)+f(2-x)=0.
當(dāng)x<1時(shí),有2-x>1,又當(dāng)x>1時(shí),f(x)=2x2-12x+16,故函數(shù)的最小值為f(3)=-2.
∴當(dāng)x<1時(shí),f(x)=-f(2-x)=-[2 (2-x)2-12(2-x)+16]=-2x2-4x=-2x(x+2),故函數(shù)的最大值為2.
直線y=m與函數(shù)f(x)圖象的所有交點(diǎn)的個(gè)數(shù),就是方程f(x)=m的零點(diǎn)的個(gè)數(shù).
由題意可得,直線y=m與函數(shù)f(x)圖象交點(diǎn)個(gè)數(shù)為2.如圖所示:
故實(shí)數(shù)m的取值范圍是 (-6,-2)∪(2,6),
故選C.
點(diǎn)評(píng):本題主要考查函數(shù)的奇偶性的應(yīng)用,函數(shù)的零點(diǎn)與方程的根的關(guān)系,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)的定義域?yàn)閧x|x≠0},且滿足對(duì)于定義域內(nèi)任意的x1,x2都有等式f(x1•x2)=f(x1)+f(x2
(Ⅰ)求f(1)的值;
(Ⅱ)判斷f(x)的奇偶性并證明;
(Ⅲ)若f(2)=1,且f(x)在(0,+∞)上是增函數(shù),解關(guān)于x的不等式f(2x-1)-3≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)的定義域是[0,1),則F(x)=f[log 
12
(3-x)
]的定義域?yàn)?!--BA-->
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a>0且a≠1,函數(shù)f(x)=loga(x+1),g(x)=loga
11-x
,記F(x)=2f(x)+g(x)
(1)求函數(shù)F(x)的定義域D及其零點(diǎn);
(2)試討論函數(shù)F(x)在定義域D上的單調(diào)性;
(3)若關(guān)于x的方程F(x)-2m2+3m+5=0在區(qū)間[0,1)內(nèi)僅有一解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)的定義域?yàn)椋?1,1),它在定義域內(nèi)既是奇函數(shù)又是增函數(shù),且f(a-3)+f(4-2a)<0,則實(shí)數(shù)a的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)的定義域?yàn)閇-1,2],則函數(shù)
f(x+2)
x
的定義域?yàn)椋ā 。?/div>
A、[-1,0)∪(0,2]
B、[-3,0)
C、[1,4]
D、(0,2]

查看答案和解析>>

同步練習(xí)冊(cè)答案