Processing math: 25%
1.函數(shù)f(x)滿足對于任意實數(shù)x,都有f(-x)=f(x),且當(dāng)x1,x2∈[0,+∞),x1≠x2時,fx1fx2x1x0都成立,則下列結(jié)論正確的是(  )
A.f(-2)>f(0)>f(1)B.f(-2)>f(1)>f(0)C.f(1)>f(0)>f(-2)D.f(1)>f(-2)>f(0)

分析 根據(jù)題意,分析可得函數(shù)f(x)為偶函數(shù),進而由偶函數(shù)的性質(zhì)有f(-2)=f(2),繼而分析可得函數(shù)f(x)在[0,+∞)上為增函數(shù),分析可得f(2)>f(1)>f(0),結(jié)合f(-2)=f(2),分析可得f(-2)>f(1)>f(0);即可得答案.

解答 解:根據(jù)題意,函數(shù)f(x)滿足對于任意實數(shù)x,都有f(-x)=f(x),
則函數(shù)f(x)為偶函數(shù),有f(-2)=f(2),
又由當(dāng)x1,x2∈[0,+∞),x1≠x2時,fx1fx2x1x20都成立,則函數(shù)f(x)在[0,+∞)上為增函數(shù),
有f(2)>f(1)>f(0);
又由f(-2)=f(2),
則有f(-2)>f(1)>f(0);
故選:B.

點評 本題考查函數(shù)奇偶性與單調(diào)性的綜合應(yīng)用,關(guān)鍵是依據(jù)題意,分析出函數(shù)的奇偶性與單調(diào)性.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若函數(shù)y=f(x)在區(qū)間I上是增函數(shù),且函數(shù)y=fxx在區(qū)間I上是減函數(shù),則稱函數(shù)f(x)是區(qū)間I上的“H函數(shù)”.對于命題:①函數(shù)fx=x+2x是(0,1)上的“H函數(shù)”;②函數(shù)gx=2x1x2是(0,1)上的“H函數(shù)”.下列判斷正確的是( �。�
A.①和②均為真命題B.①為真命題,②為假命題
C.①為假命題,②為真命題D.①和②均為假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)函數(shù)f(x)=(sinBcosAx+(sinAcosBx,其中A、B為△ABC的內(nèi)角,如果對任意x>0都有f(x)<2,那么( �。�
A.0<A+B<\frac{π}{4}B.0<A+B<\frac{π}{2}C.\frac{π}{2}<A+B<\frac{3π}{4}D.A+B>\frac{π}{2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.雙曲線C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})的一條漸近線與直線x+2y+1=0垂直,F(xiàn)1,F(xiàn)2為C的焦點,A為雙曲線上一點,若|F1A|=2|F2A|,則cos∠AF2F1=\frac{{\sqrt{5}}}{5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,在三棱錐V-ABC中,平面VAV⊥平面ABC,△VAB為等邊三角形,AC⊥BC且AC=BC=\sqrt{2},O,M分別AB,VA的中點.
(Ⅰ)求證:VB∥平面 M OC;
(Ⅱ)求三棱錐V-A BC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.拋物線x2=\frac{1}{4}y上的一點M到焦點的距離為1,則點M到x軸的距離是( �。�
A.\frac{17}{16}B.\frac{15}{16}C.1D.\frac{7}{8}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.化簡\frac{cos2α}{{4{{sin}^2}(\frac{π}{4}+α)tan(\frac{π}{4}-α)}}=( �。�
A.cosαB.sinαC.1D.\frac{1}{2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,E,F(xiàn)分別是三棱柱ABC-A1B1C1的棱AC,A1C1的中點,證明:平面AB1F∥平面BC1E.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.一條光線從點(-2,-3)射出,經(jīng)y軸反射后與圓(x+3)2+(y-2)2=1相切,則入射光線所在直線的斜率為( �。�
A.\frac{3}{2}\frac{2}{3}B.\frac{4}{3}\frac{3}{4}C.\frac{5}{3}或\frac{3}{5}D.\frac{5}{4}或\frac{4}{5}

查看答案和解析>>

同步練習(xí)冊答案