解:(1)當(dāng)
時(shí),
則
,
∵h(yuǎn)(x)的定義域?yàn)椋?,+∞),令h'(x)=0,得x=1
∴當(dāng)0<x<1時(shí),h'(x)>0,h(x)在(0,1)上是單調(diào)遞增;
當(dāng)x>1時(shí),h'(x)<0,h(x)在(1,+∞)上是單調(diào)遞減;
所以,函數(shù)h(x)=f(x)-g(x)的單調(diào)遞增區(qū)間為(0,1);單調(diào)遞減區(qū)間為(1,+∞).
(2)b=2時(shí),
則
因?yàn)楹瘮?shù)h(x)存在單調(diào)遞減區(qū)間,
所以h′(x)<0有解.
即當(dāng)x>0時(shí),則ax
2+2x-1>0在(0,+∞)上有解.
①當(dāng)a=0時(shí),y=2x-1為單調(diào)遞增的一次函數(shù),y=2x-1>0在(0,+∞)總有解.
②當(dāng)a>0時(shí),y=ax
2+2x-1為開口向上的拋物線,y=ax
2+2x-1>0在(0,+∞)總有解.
③當(dāng)a<0時(shí),y=ax
2+2x-1為開口向下的拋物線,而y=ax
2+2x-1>0在(0,+∞)總有解,
則△=4+4a>0,且方程y=ax
2+2x-1=0至少有一個(gè)正根,
此時(shí),-1<a<0
綜上所述,a的取值范圍為(-1,+∞)
分析:(1)將a、b的值代入,可得
,求出其導(dǎo)數(shù),再在區(qū)間(0,∞)上討論導(dǎo)數(shù)的正負(fù),可以得出函數(shù)h(x)單調(diào)區(qū)間;
(2)先求函數(shù)h(x)的解析式,因?yàn)楹瘮?shù)h(x)存在單調(diào)遞減區(qū)間,所以不等式h'(x)<0有解,通過討論a的正負(fù),得出h′(x)<0有解,即可得出a的取值范圍.
點(diǎn)評:本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、導(dǎo)數(shù)的幾何意義,函數(shù)與方程的討論等,屬于難題.