已知f(x)=lnx,g(x)=數(shù)學(xué)公式ax2+bx,
(1)當(dāng)a=b=數(shù)學(xué)公式時(shí),求函數(shù)h(x)=f(x)-g(x)的單調(diào)區(qū)間;
(2)若b=2且h(x)=f(x)-g(x)存在單調(diào)遞減區(qū)間,求a的取值范圍.

解:(1)當(dāng) 時(shí),
,
∵h(yuǎn)(x)的定義域?yàn)椋?,+∞),令h'(x)=0,得x=1
∴當(dāng)0<x<1時(shí),h'(x)>0,h(x)在(0,1)上是單調(diào)遞增;
當(dāng)x>1時(shí),h'(x)<0,h(x)在(1,+∞)上是單調(diào)遞減;
所以,函數(shù)h(x)=f(x)-g(x)的單調(diào)遞增區(qū)間為(0,1);單調(diào)遞減區(qū)間為(1,+∞).
(2)b=2時(shí),

因?yàn)楹瘮?shù)h(x)存在單調(diào)遞減區(qū)間,
所以h′(x)<0有解.
即當(dāng)x>0時(shí),則ax2+2x-1>0在(0,+∞)上有解.
①當(dāng)a=0時(shí),y=2x-1為單調(diào)遞增的一次函數(shù),y=2x-1>0在(0,+∞)總有解.
②當(dāng)a>0時(shí),y=ax2+2x-1為開口向上的拋物線,y=ax2+2x-1>0在(0,+∞)總有解.
③當(dāng)a<0時(shí),y=ax2+2x-1為開口向下的拋物線,而y=ax2+2x-1>0在(0,+∞)總有解,
則△=4+4a>0,且方程y=ax2+2x-1=0至少有一個(gè)正根,
此時(shí),-1<a<0
綜上所述,a的取值范圍為(-1,+∞)
分析:(1)將a、b的值代入,可得 ,求出其導(dǎo)數(shù),再在區(qū)間(0,∞)上討論導(dǎo)數(shù)的正負(fù),可以得出函數(shù)h(x)單調(diào)區(qū)間;
(2)先求函數(shù)h(x)的解析式,因?yàn)楹瘮?shù)h(x)存在單調(diào)遞減區(qū)間,所以不等式h'(x)<0有解,通過討論a的正負(fù),得出h′(x)<0有解,即可得出a的取值范圍.
點(diǎn)評:本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、導(dǎo)數(shù)的幾何意義,函數(shù)與方程的討論等,屬于難題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義在(0,+∞)上的三個(gè)函數(shù)f(x)、g(x)、h(x),已知f(x)=lnx,g(x)=x2-af(x),h(x)=x-a
x
,且g(x)在x=1處取得極值.
(1)求a的值及h(x)的單調(diào)區(qū)間;
(2)求證:當(dāng)1<x<e2時(shí),恒有x<
2+f(x)
2-f(x)

(3)把h(x)對應(yīng)的曲線C1向上平移6個(gè)單位后得到曲線C2,求C2與g(x)對應(yīng)曲線C3的交點(diǎn)的個(gè)數(shù),并說明道理.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=lnx,g(x)=x+
a
x
(a∈R).
(1)求f(x)-g(x)的單調(diào)區(qū)間;
(2)若x≥1時(shí),f(x)≤g(x)恒成立,求實(shí)數(shù)a的取值范圍;
(3)當(dāng)n∈N*,n≥2時(shí),證明:
ln2
3
ln3
4
•…•
lnn
n+1
1
n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=lnx-
a
x

(Ⅰ)當(dāng)a>0時(shí),判斷f(x)在定義域上的單調(diào)性;
(Ⅱ)若f(x)<x2在(1,+∞)上恒成立,試求a的取值范圍;
(Ⅲ)若f(x)在[1,e]上的最小值為
3
2
,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=lnx,g(x)=x2-x,
(1)求函數(shù)h(x)=f(x)-g(x)的單調(diào)增區(qū)間;
(2)當(dāng)x∈[-2,0]時(shí),g(x)≤2c2-c-x3恒成立,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=lnx+cosx,則f(x)在x=
π2
處的導(dǎo)數(shù)值為
 

查看答案和解析>>

同步練習(xí)冊答案