1.若sinx-2cosx=0,求$\frac{{cos(\frac{π}{2}+x)sin(-π-x)}}{{cos(\frac{11π}{2}-x)sin(\frac{9π}{2}+x)}}$的值.

分析 利用誘導(dǎo)公式化簡(jiǎn)所以的表達(dá)式,代入已知條件求解即可.

解答 解:sinx-2cosx=0,$\frac{sinx}{cosx}=2$
$\frac{{cos(\frac{π}{2}+x)sin(-π-x)}}{{cos(\frac{11π}{2}-x)sin(\frac{9π}{2}+x)}}$=-$\frac{-sinxsinx}{sinxcosx}$=$\frac{sinx}{cosx}=2$.

點(diǎn)評(píng) 本題考查誘導(dǎo)公式的應(yīng)用,三角函數(shù)化簡(jiǎn)求值,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.己知函數(shù)f(x)=e${\;}^{\sqrt{3}x}$•sinx,x∈[-$\frac{π}{4}$,$\frac{π}{4}$]
(1)求f(x)的單調(diào)遞增區(qū)間
(2)函數(shù)g(x)=f′(x)•f(-x)+$\frac{\sqrt{3}}{2}$,x∈[-$\frac{π}{4}$,$\frac{π}{4}$],試求出其最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.在△ABC中,已知a=2,b=x,B=30°.如果x=1,則∠A=90°;如果x=$\frac{{2\sqrt{3}}}{3}$,則∠A=60°或120°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.在△ABC中,B=60°,且c=8,b-a=4,則b=7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=$\sqrt{{9}^{x}-{3}^{x}}$.
(1)求f(x)定義域和值域.
(2)若f(x)>$\sqrt{6}$,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知各項(xiàng)都為正數(shù)的等比數(shù)列{an}滿足$\frac{1}{2}$a3是3a1與2a2的等差中項(xiàng),且a1a2=a3
( I)求數(shù)列{an}的通項(xiàng)公式;
( II)設(shè)bn=log3an,且Sn為數(shù)列{bn}的前n項(xiàng)和,求數(shù)列{${\frac{{1+2{S_n}}}{S_n}$}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知全集U=R,集合A={0,1,2,3,4,5},B={x∈R|x≥2},則圖中陰影部分所表示的集合為(  )
A.{0,1}B.{1}C.{1,2}D.{0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知命題p:?x∈R,3x<4x,命題q:?x∈R,x3=1-x2,則下列命題中為真命題的是(  )
A.p∧¬qB.¬p∧qC.¬p∧¬qD.p∧q

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.如圖為一個(gè)求20個(gè)數(shù)的平均數(shù)的算法語(yǔ)句,在橫線上應(yīng)填充的語(yǔ)句為S=S+x.

查看答案和解析>>

同步練習(xí)冊(cè)答案