分析 (1)根據(jù)題意函數(shù)解析式有意義,9x-3x≥0可得定義域.因?yàn)?x≥3x,函數(shù)f(x)在定義內(nèi)是增函數(shù).利用單調(diào)性求解即可得函數(shù)的值域.
(2)由題意:f(x)>$\sqrt{6}$,即$\sqrt{{9}^{x}-{3}^{x}}$>$\sqrt{6}$,采用兩邊平方法求解即可.
解答 解:函數(shù)f(x)=$\sqrt{{9}^{x}-{3}^{x}}$.
函數(shù)解析式有意義,9x-3x≥0,
解得:x≥0,
∴函數(shù)f(x)的定義域?yàn)閧x|x≥0}.
∵9x≥3x
∴函數(shù)f(x)=$\sqrt{{9}^{x}-{3}^{x}}$在定義內(nèi)是增函數(shù).
當(dāng)x=0時(shí),函數(shù)f(x)取得最小值0,
所以函數(shù)f(x)的值域?yàn)閇0,+∞).
(2)由題意:f(x)>$\sqrt{6}$,即$\sqrt{{9}^{x}-{3}^{x}}$$>\sqrt{6}$,
兩邊平方,可得:9x-3x>6,
整理化簡:(3x-3)(3x+2)>0.
得:3x>3,即:x>1.
故得實(shí)數(shù)x的取值范圍(1,+∞).
點(diǎn)評 本題考查了指數(shù)函數(shù)的運(yùn)算,定義域值域的求法和解不等式.屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 向左平移$\frac{π}{3}$個(gè)單位 | B. | 向右平移$\frac{π}{3}$個(gè)單位 | ||
C. | 向右平移$\frac{π}{6}$個(gè)單位 | D. | 向左平移$\frac{π}{6}$個(gè)單位 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 31 | B. | 34 | C. | 68 | D. | 70 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | EF與GH互相平行 | B. | EF與GH異面 | C. | EF與GH相交 | D. | EH與FG相交 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com