16.已知函數(shù)f(x)=$\sqrt{{9}^{x}-{3}^{x}}$.
(1)求f(x)定義域和值域.
(2)若f(x)>$\sqrt{6}$,求實(shí)數(shù)x的取值范圍.

分析 (1)根據(jù)題意函數(shù)解析式有意義,9x-3x≥0可得定義域.因?yàn)?x≥3x,函數(shù)f(x)在定義內(nèi)是增函數(shù).利用單調(diào)性求解即可得函數(shù)的值域.
(2)由題意:f(x)>$\sqrt{6}$,即$\sqrt{{9}^{x}-{3}^{x}}$>$\sqrt{6}$,采用兩邊平方法求解即可.

解答 解:函數(shù)f(x)=$\sqrt{{9}^{x}-{3}^{x}}$.
函數(shù)解析式有意義,9x-3x≥0,
解得:x≥0,
∴函數(shù)f(x)的定義域?yàn)閧x|x≥0}.
∵9x≥3x
∴函數(shù)f(x)=$\sqrt{{9}^{x}-{3}^{x}}$在定義內(nèi)是增函數(shù).
當(dāng)x=0時(shí),函數(shù)f(x)取得最小值0,
所以函數(shù)f(x)的值域?yàn)閇0,+∞).
(2)由題意:f(x)>$\sqrt{6}$,即$\sqrt{{9}^{x}-{3}^{x}}$$>\sqrt{6}$,
兩邊平方,可得:9x-3x>6,
整理化簡:(3x-3)(3x+2)>0.
得:3x>3,即:x>1.
故得實(shí)數(shù)x的取值范圍(1,+∞).

點(diǎn)評 本題考查了指數(shù)函數(shù)的運(yùn)算,定義域值域的求法和解不等式.屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知f(x)=1-sin(2x+$\frac{π}{6}$)-2sin2x,要得到y(tǒng)=f(x)的圖象,只需將函數(shù)y=cos2x的圖象( 。
A.向左平移$\frac{π}{3}$個(gè)單位B.向右平移$\frac{π}{3}$個(gè)單位
C.向右平移$\frac{π}{6}$個(gè)單位D.向左平移$\frac{π}{6}$個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知點(diǎn)A(-3,0),B(3,0),動(dòng)點(diǎn)P滿足|PA|=2|PB|.
(1)若動(dòng)點(diǎn)P的軌跡為曲線C,求此曲線C的方程;
(2)若曲線C的切線在兩坐標(biāo)軸上有相等的截距,求此切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.經(jīng)過B(1,2)作兩條互相垂直的直線l1和l2,l1交y軸正半軸于點(diǎn)A,l2交x軸正半軸于點(diǎn)C.若存在經(jīng)過O,A,B,C四點(diǎn)的圓C,則圓C半徑的取值范圍是[$\frac{\sqrt{5}}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知等差數(shù)列{an}的前20項(xiàng)和S20=340,則a6+a9+a11+a14 等于( 。
A.31B.34C.68D.70

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若sinx-2cosx=0,求$\frac{{cos(\frac{π}{2}+x)sin(-π-x)}}{{cos(\frac{11π}{2}-x)sin(\frac{9π}{2}+x)}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如圖,在空間四邊形ABCD中,點(diǎn)E,H分別是邊AB,AD的中點(diǎn),F(xiàn),G分別是邊BC,CD上的點(diǎn),且$\frac{CF}{CB}$=$\frac{CG}{CD}$=$\frac{2}{3}$,則(  )
A.EF與GH互相平行B.EF與GH異面C.EF與GH相交D.EH與FG相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知A(3,5),O為坐標(biāo)原點(diǎn),則與OA垂直的直線斜率為-$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.l1:x+(1+m)y+m-2=0;l2:mx+2y+8=0.當(dāng)m為何值時(shí),l1與l2
(1)垂直         
(2)平行.

查看答案和解析>>

同步練習(xí)冊答案