【題目】已知點C是拋物線上的動點.

1)求周長的最小值;

2)若C位于直線AB右下方,求面積的最大值.

【答案】12

【解析】

1)過作拋物線準線的垂線,垂足為,根據(jù)拋物線的定義可知,那么周長即為,為定值,則共線時周長最小,即得;(2)作與直線平行的直線,到直線的距離就是邊上的高,且點在拋物線上,則當與拋物線相切時,面積的最大,設點,由拋物線在點處的切線斜率與直線的斜率相同,可得,即得點坐標,利用點到直線的距離公式,以及邊的長度,由公式計算即得.

1)過作拋物線準線的垂線,垂足為,如圖1所示,

為拋物線焦點,,又為常數(shù),共線時,周長最小,,周長最小值為.

2)作與直線平行的直線,如圖所示,

與拋物線相切時,切點使得面積最大,此時到直線的距離就是邊上的高,設切點,由,,即切點的坐標為,點的距離為,的最大值為,即面積最大值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知盒子中裝有紅色、藍色紙牌各100張,每種顏色紙牌均含標數(shù)為的紙牌各一張,兩種顏色紙牌的標數(shù)總和記為.

對于給定的正整數(shù),若能從盒子中取出若干張紙牌,使其標數(shù)之和恰為,則稱其為一種取牌“n—方案”.記不同的n—方案種數(shù)為.試求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知偶函數(shù).

1)若方程有兩不等實根,求的范圍;

2)若上的最小值為2,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,,,平面底面,.分別是的中點,求證:

(Ⅰ)底面;

(Ⅱ)平面;

(Ⅲ)平面平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)有甲、乙、丙、丁、戌5人參加社區(qū)志愿者服務活動,每人從事團購、體溫測量、進出人員信息登記、司機四項工作之一,每項工作至少有一人參加.若甲、乙不會開車但能從事其他三項工作,丙、丁、戌都能勝任四項工作,則不同安排方案的種數(shù)是(

A.234B.152C.126D.108

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)x2(x1)|xa|.

(1)a=-1,解方程f(x)1;

(2)若函數(shù)f(x)R上單調(diào)遞增,求實數(shù)a的取值范圍;

(3)是否存在實數(shù)a,使不等式f(x)≥2x3對任意xR恒成立?若存在,求出a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知從甲地到乙地的公路里程約為240(單位:km.某汽車每小時耗油量Q(單位:L)與速度x(單位:)()的關系近似符合以下兩種函數(shù)模型中的一種(假定速度大小恒定):①,②,經(jīng)多次檢驗得到以下一組數(shù)據(jù):

x

0

40

60

120

Q

0

20

1)你認為哪一個是符合實際的函數(shù)模型,請說明理由;

2)從甲地到乙地,這輛車應以多少速度行駛才能使總耗油量最少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若實數(shù)滿足,則稱的不動點.已知函數(shù)

,其中,為常數(shù)。

(1)若,求函數(shù)的單調(diào)遞增區(qū)間;

(2)若時,存在一個實數(shù),使得既是的不動點,又是的極值點,求實數(shù)的值;

(3)證明:不存在實數(shù)組,使得互異的兩個極值點均為不動點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某高校在2012年的自主招生考試成績中隨機抽取名中學生的筆試成績,按成績分組,得到的頻率分布表如表所示.

組號

分組

頻數(shù)

頻率

第1組

5

第2組

第3組

30

第4組

20

第5組

10

(1)請先求出頻率分布表中位置的相應數(shù)據(jù),再完成頻率分布直方圖;

(2)為了能選拔出最優(yōu)秀的學生,高校決定在筆試成績高的第組中用分層抽樣抽取名學生進入第二輪面試,求第3、4、5組每組各抽取多少名學生進入第二輪面試;

(3)在(2)的前提下,學校決定在名學生中隨機抽取名學生接受考官進行面試,求:第組至少有一名學生被考官面試的概率.

查看答案和解析>>

同步練習冊答案