9.一盒中有12個質(zhì)地均勻的乒乓球,其中9個新的,3個舊的,從盒中任取3個球來用,用完后裝回盒中,此時盒中舊球個數(shù)X是一個隨機變量,則P(X=4)的值為$\frac{27}{220}$(用數(shù)字作答)

分析 X=4是指取出的三個球中有2個舊的1個新的,由此能求出P(X=4).

解答 解:一盒中有12個質(zhì)地均勻的乒乓球,其中9個新的,3個舊的,從盒中任取3個球來用,
用完后裝回盒中,此時盒中舊球個數(shù)X是一個隨機變量,
則X=4是指取出的三個球中有2個舊的1個新的,
∴P(X=4)=$\frac{{C}_{9}^{1}{C}_{3}^{2}}{{C}_{12}^{3}}$=$\frac{27}{220}$.
故答案為:$\frac{27}{220}$.

點評 本題考查概率的求法,考查排列組合、古典概型等基礎(chǔ)知識,考查推理論證能力、運算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=ax+$\frac{x}+c({a>0}),g(x)=lnx$,其中函數(shù)f(x)的圖象在點(1,f(1))處的切線方程為y=x-1.
(1)若a=$\frac{1}{2}$,求函數(shù)f(x)的解析式;
(2)若f(x)≥g(x)在[1,+∞)上恒成立,求實數(shù)a的取值范圍;
(3)證明:1+$\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n}>ln({n+1})+\frac{n}{{2({n+1})}}({n≥1})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知{an}是各項均為正數(shù)的等比數(shù)列(公比q>1),bn=log2an,b1+b2+b3=3,b1b2b3=-3,則an=( 。
A.${a_n}={2^{2n-3}}$B.${a_n}={2^{5-2n}}$
C.${a_n}={2^{2n-5}}$D.${a_n}={2^{2n-3}}$或${a_n}={2^{5-2n}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.甲、乙兩位同學(xué)期末考試的語文、數(shù)學(xué)、英語、物理成績?nèi)缜o葉圖所示,其中甲的一個數(shù)據(jù)記錄模糊,無法辨認(rèn),用a來表示,已知兩位同學(xué)期末考試四科的總分恰好相同,則甲同學(xué)四科成績的中位數(shù)為( 。
A.92B.92.5C.93D.93.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.中國古代數(shù)學(xué)著作《算法統(tǒng)宗》中有這樣的一個問題:“三百七十八里路,初步健步不為難,次日腳痛減一半,六朝才得其關(guān),要見次日行里數(shù),請公仔細(xì)算相還.”其大意是:“有一個人走378里路,第一天健步行走,從第二天起腳痛,每天走的路程是前一天的一半,走了6天后才到達目的地.”則該人第四天走的路程為( 。
A.3里B.6里C.12里D.24里

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在正方體ABCD-A1B1C1D1中,異面直線B1D1與AC所成角大小是90°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.一超市在銷售一批大小相近的某時令水果時,由于存放的時間對口味影響較大,超市根據(jù)調(diào)研決定最多銷售5天,第6天就會扎成果汁.進價2元一個,售價10元一個,每天的倉儲保管費平均為每個水果每天0.5元,(第一天售出的水果,算一天倉儲保管費,第二天售出的水果,算兩天倉儲保管費,以此類推)一個水果榨成果汁后能賣2元且能很快售完,果汁不計倉儲保管成本.按以下規(guī)則定價:
售出時間第一天第二天第三天第四天第五天
售出時折扣原價9折8折7折5折
從該批水果中隨機抽取100個貼上標(biāo)記,根據(jù)這100個水果的銷售情況得到如下數(shù)據(jù):
售出的時間第一天第二天第三天第四天第五天
售出的個數(shù)402515510
(1)①估計一個水果至多兩天(包括兩天)銷售出去的概率;
②若一個水果在第二天售出,求這個水果產(chǎn)生的利潤.
(2)以事件發(fā)生的頻率作為相應(yīng)的概率,在這批水果的銷售活動中,設(shè)一個水果產(chǎn)生的利潤為X元,求X的分布列和數(shù)學(xué)期望E(X)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知實數(shù)x,y滿足$\left\{{\begin{array}{l}{y≥x+2}\\{x+y≤4}\\{2y≥4-x}\end{array}}\right.$,則$z={(\frac{1}{2})^{2x-y}}$的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.求函數(shù)$f(x)=\frac{{-2{x^2}+x-3}}{x},\;(x>0)$的最大值,以及此時x的值.

查看答案和解析>>

同步練習(xí)冊答案