19.某初級(jí)中學(xué)有學(xué)生270人,其中一年級(jí)108人,二、三年級(jí)各81人,現(xiàn)要利用抽樣方法抽取10人參加某項(xiàng)調(diào)查,考慮選用簡(jiǎn)單隨機(jī)抽樣、分層抽樣和系統(tǒng)抽樣三種方案,使用簡(jiǎn)單隨機(jī)抽樣和分層抽樣時(shí),將學(xué)生按一、二、三年級(jí)依次統(tǒng)一編號(hào)為1,2,…,270;使用系統(tǒng)抽樣時(shí),將學(xué)生統(tǒng)一隨機(jī)編號(hào)1,2,…,270,并將整個(gè)編號(hào)依次分為10段.如果抽得號(hào)碼有下列四種情況:
①7,34,61,88,115,142,169,196,223,250;
②5,9,100,107,111,121,180,195,200,265;
③11,38,65,92,119,146,173,200,227,254;
④30,57,84,111,138,165,192,219,246,270;
關(guān)于上述樣本的下列結(jié)論中,正確的是( 。
A.②、③都不能為系統(tǒng)抽樣B.②、④都不能為分層抽樣
C.①、④都可能為系統(tǒng)抽樣D.①、③都可能為分層抽樣

分析 根據(jù)系統(tǒng)抽樣和分層抽樣的定義分別進(jìn)行判斷即可.

解答 解:①樣本間隔是27.有可能是系統(tǒng)抽樣,
②樣本間隔不相同,不可能是系統(tǒng)抽樣
③樣本間隔相同是27,有可能是系統(tǒng)抽樣,
④樣本間隔是27,但第一組沒(méi)有號(hào)碼,故④不是系統(tǒng)抽樣,
由于一年級(jí)108人,二、三年級(jí)各81人,則如使用分層抽樣對(duì)應(yīng)的人數(shù)為108:81:81=4:3:3,則①③有可能是分層抽樣,
故選:D.

點(diǎn)評(píng) 本題主要考查分層抽樣和系統(tǒng)抽樣的判斷,相應(yīng)的定義是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖甲,在平面四邊形PABC中,PA=AC=2,PA=AC=2,∠P=45°,∠B=90°,∠PCB=105°,現(xiàn)將四邊形PABC沿AC折起,使平面PAC⊥平面ABC(如圖乙),點(diǎn)D是棱PB的中點(diǎn).
(Ⅰ)求證:BC⊥AD;
(Ⅱ)試探究在棱PC上是否存在點(diǎn)E,使得平面ADE與平面ABC所成的二面角的余弦值為$\frac{{\sqrt{21}}}{7}$.若存在,請(qǐng)確定點(diǎn)E的位置;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.偶函數(shù)f(x)滿(mǎn)足f(x-1)=f(x+1),且在x∈[0,1]時(shí),f(x)=2x,則關(guān)于x的方程f(x)=(${\frac{1}{2}}$)x在x∈[0,4]上解的個(gè)數(shù)是( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知數(shù)列{an},{bn}滿(mǎn)足a1=b1=3,an+1-an=$\frac{{{b_{n+1}}}}{b_n}$=3,n∈N*,若數(shù)列{cn}滿(mǎn)足cn=b1an,則c2013=( 。
A.92012B.272012C.92013D.272013

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)g(x)=42x-5•22x+1+16,函數(shù)f(x)=log2$\frac{x}{4}$•log4(4x2),記集合A={x|g(x)≤0}.
( I)求集合A;
( II)當(dāng)x∈A時(shí),求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知△ABC的面積為1,在△ABC內(nèi)任取一點(diǎn)P,則△PBC的面積小于$\frac{1}{3}$的概率為$\frac{5}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.將一個(gè)正方體金屬塊鑄造成一球體,不計(jì)損耗,則其先后表面積之比值為( 。
A.1B.$\frac{6}{π}$C.$\frac{3}{2π}$D.$\root{3}{\frac{6}{π}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知數(shù)列{an}是等差數(shù)列,其前n項(xiàng)和為Sn,若首項(xiàng)a1>0且-1<$\frac{a_7}{a_6}$<0,有下列四個(gè)命題:
P1:d<0;
P2:a1+a12<0;
P3:數(shù)列{an}的前7項(xiàng)和最大;
P4:使Sn>0的最大n值為12;
其中正確的命題為( 。
A.P1,P2B.P1,P4C.P2,P3D.P3,P4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若函數(shù)y=x2-4x的定義域是{x|1≤x<5,x∈N},則其值域?yàn)椋ā 。?table class="qanwser">A.[-3,5)B.[-4,5)C.{-4,-3,0}D.{0,1,2,3,4}

查看答案和解析>>

同步練習(xí)冊(cè)答案