如圖所示,在四面體中,,兩兩互相垂直,且

(1)求證:平面平面
(2)求二面角的大。
(3)若直線與平面所成的角為,求線段的長度.
(1)∵ ,,∴ 平面,又平面,∴ 平面平面(2)(3)

試題分析:(1)∵ ,,
平面
平面,
∴ 平面平面.                                  4分
(2)∵ ,,∴ 平面

是二面角的平面角.                     6分
中,∵ ,∴
∴ 二面角的大小為.                          8分
(3)過點,垂足為,連接
∵ 平面平面,  ∴ 平面,
與平面所成的角.
.                                   10分
中,,∴
又∵在中,,∴ ,
∴ 在中,.                            12分
點評:面面垂直的判定主要利用垂直的判定定理和性質(zhì)定理,本題中的二面角線面角求解時現(xiàn)根據(jù)定義做出相應(yīng)的角,再通過解三角形求出角的大小
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐的底面是邊長為2的菱形,.已知 .

(Ⅰ)證明:
(Ⅱ)若的中點,求三菱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)、是不同的直線,、、是不同的平面,以下四個命題為真命題的是
① 若 則    ②若,,則
③ 若,則  ④若,則
A.①③B.①②③C.②③④D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四邊形ABCD中,AC平分∠DAB,∠ABC=60°,AC=6,AD=5,S△ADC,求AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在三棱錐中,,且,平面,過作截面分別交,且二面角的大小為,則截面面積的最小值為      .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知在正方體,分別是的中點,在棱上,且

(1)求證:; (2)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖四棱錐E—ABCD中,底面ABCD是平行四邊形。∠ABC=45°,BE=BC=   EA=EC=6,M為EC中點,平面BCE⊥平面ACE,AE⊥EB

(I)求證:AE⊥BC (II)求四棱錐E—ABCD體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,三棱錐P-ABC中,PC平面ABC,PC=AC=2,AB=BC,D是PB上一點,且CD平面PAB

(1)求證:AB平面PCB;
(2)求異面直線AP與BC所成角的大;
(3)求二面角C-PA-B 的大小的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,是以為直徑的半圓上異于的點,矩形所在的平面垂直于該半圓所在的平面,且

(Ⅰ)求證:;
(Ⅱ)設(shè)平面與半圓弧的另一個交點為
①試證:
②若,求三棱錐的體積.

查看答案和解析>>

同步練習(xí)冊答案