下列命題中,
①命題“?x∈(0,2),x2+2x+2<0”的否定是“?x∈(0,2),x2+2x+2>0”;
x>1
y>2
x+y>3
xy>2
的充要條件;
③一個(gè)命題的逆命題為真,它的否命題也一定為真;
④“9<k<15”是“方程
x2
15-k
+
y2
k-9
=1表示橢圓”的充要條件.
⑤設(shè)P是以F1、F2為焦點(diǎn)的雙曲線一點(diǎn),且
PF 1
PF 2
=0,若△PF1F2的面積為9,則雙曲線的虛軸長(zhǎng)為6;
其中真命題的是
 
(將正確命題的序號(hào)填上).
考點(diǎn):命題的真假判斷與應(yīng)用
專題:簡(jiǎn)易邏輯
分析:①小于0的否定是大于等于0,結(jié)論否定錯(cuò)誤;
②由定義和舉反例取x=
1
2
,y=10,即可否定;
③互為逆否命題的兩命題等價(jià),逆命題和否命題互為逆否命題,即可判斷;
④利用橢圓定義求解,分充分性和必要性判斷;
⑤利用雙曲線的焦三角形性質(zhì)求解,然后判斷.
解答: 解:①根據(jù)命題“?x∈(0,2),x2+2x+2<0”是特稱命題,其否定為全稱命題,即?x∈(0,2),x2+2x+2≥0.故①錯(cuò)誤;
x>1
y>2
可推出
x+y>3
xy>2
,反之,不成立,比如取x=
1
2
,y=10,滿足
x+y>3
xy>2
,但推不出x>1且y>2,故應(yīng)為充分不必要條件,故②錯(cuò)誤;
③互為逆否命題的兩命題等價(jià),逆命題和否命題互為逆否命題,故③正確;
④當(dāng)9<K<12和12<K<15時(shí),15-K>0,K-9>0,且15-K≠K-12,此時(shí)方程
x2
15-k
+
y2
k-9
=1表示橢圓,但是當(dāng)K=12時(shí),有15-K=K-9,那么
x2
15-k
+
y2
k-9
=1就表示一個(gè)圓,
∴當(dāng)9<K<15時(shí),不能推導(dǎo)出方程
x2
15-k
+
y2
k-9
=1表示橢圓,但是當(dāng)方程
x2
15-k
+
y2
k-9
=1表示橢圓時(shí),可以推導(dǎo)出9<K<15,故9<K<12是 方程表示橢圓必要不充分條件,故④錯(cuò)誤;
⑤由題意可得||PF1|-|PF2||=2a(a>0),兩邊平方展開得|PF1|2+|PF2|2-2|PF1|•|PF2|=4a2 記為*式,
PF 1
PF 2
=0,得PF1⊥PF2,則有|PF1|2+|PF2|2=4c2,
且由△PF1F2的面積為S=
1
2
|PF1|•|PF2|=9,得|PF1|•|PF2|=18,
都代入*式,得4c2-36=4a2,即4c2-4a2=36,即b2=c2-a2=9,b=3,虛軸長(zhǎng)為2b=6,故⑤正確,
其中真命題的是③⑤,
故答案為:③⑤.
點(diǎn)評(píng):本題考查四種命題及真假的判斷,考查充分必要條件的判斷,注意運(yùn)用定義,非常容易出錯(cuò),屬較難的題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合M={1,2,3},N={1,3},則下列關(guān)系正確的是( 。
A、N∈MB、N∉M
C、N=MD、N?M

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x1,x2為實(shí)系數(shù)2x2-6x+m=0的兩個(gè)虛根,且|x1-x2|=
3

(1)求實(shí)數(shù)m的值;
(2)計(jì)算
lim
n→∞
|x1|2n+|x2|2n
|x1-x2|n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某公司有20名技術(shù)人員,計(jì)劃開發(fā)A,B兩類共50件電子器件,每類每件所需人員和預(yù)計(jì)產(chǎn)值如下:
產(chǎn)品種類每件需要人員數(shù)每件產(chǎn)值/萬元
A類 
1
2
 
 7.5
B類 
1
3
 6
今制定計(jì)劃欲使總產(chǎn)量最高,則應(yīng)開發(fā)A類電子器件
 
件,能使產(chǎn)值最高為
 
萬元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

彈簧振子的振動(dòng)是簡(jiǎn)諧運(yùn)動(dòng),下表給出了振子在完成一次全振動(dòng)的過程中的時(shí)間t與位移s之間的對(duì)應(yīng)數(shù)據(jù),根據(jù)這些數(shù)據(jù)求出這個(gè)振子的振動(dòng)函數(shù)解析式.
t0t02t03t04t05t06t07t08t09t010t011t012t0
s-20.0-17.8-10.10.110.317.720.017.710.30.1-10.1-17.8-20.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

家政服務(wù)公司根據(jù)用戶滿意程度將本公司家政服務(wù)員分為兩類,其中A類服務(wù)員12名,B類服務(wù)員x名
(Ⅰ)若采用分層抽樣的方法隨機(jī)抽取20名家政服務(wù)員參加技術(shù)培訓(xùn),抽取到B類服務(wù)員的人數(shù)是16,求x的值;
(Ⅱ)某客戶來公司聘請(qǐng)2名家政服務(wù)員,但是由于公司人員安排已經(jīng)接近飽和,只有3名A類家政服務(wù)員和2名B類家政服務(wù)員可供選擇
①請(qǐng)列出該客戶的所有可能選擇的情況;
②求該客戶最終聘請(qǐng)的家政服務(wù)員中既有A類又有B類的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

證明:函數(shù)f(x)=
lnx
x
在區(qū)間(0,2)上是單調(diào)遞增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若對(duì)于任意實(shí)數(shù)m,關(guān)于x的方程log2(ax2+2x+1)-m=0恒有解,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,a1+a3=-8,a2+a4=-14.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{an+bn}是首項(xiàng)為1,公比為c的等比數(shù)列,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案