已知?jiǎng)狱c(diǎn)M到定點(diǎn)F(1,0)的距離比M到定直線x=-2的距離小1.
(1)求證:M點(diǎn)的軌跡是拋物線,并求出其方程;
(2)大家知道,過(guò)圓上任意一點(diǎn)P,任意作互相垂直的弦PA、PB,則弦AB必過(guò)圓心(定點(diǎn)).受此啟發(fā),研究下面問(wèn)題:
1過(guò)(1)中的拋物線的頂點(diǎn)O任意作互相垂直的弦OA、OB,問(wèn):弦AB是否經(jīng)過(guò)一個(gè)定點(diǎn)?若經(jīng)過(guò),請(qǐng)求出定點(diǎn)坐標(biāo),否則說(shuō)明理由;2研究:對(duì)于拋物線上某一定點(diǎn)P(非頂點(diǎn)),過(guò)P任意作互相垂直的弦PA、PB,弦AB是否經(jīng)過(guò)定點(diǎn)?
分析:(1)由條件可知?jiǎng)狱c(diǎn)M到定點(diǎn)F(1,0)的距離等于M到定直線x=-1的距離,拋物線的定義加以證明.
(2)先設(shè)A(x1,y1)、B(x2,y2)及中點(diǎn)P的坐標(biāo),根據(jù)中點(diǎn)的定義得到三點(diǎn)坐標(biāo)之間的關(guān)系,再由OA⊥OB得到
y1
x1
y2
x2
=-1,再結(jié)合A、B兩點(diǎn)在拋物線上滿足拋物線方程可得到y(tǒng)1y2、y12+y22的關(guān)系消去x1、y1、x2、y2可得到最后答案.;
設(shè)AB的方程為y=mx+n,代入y2=4x.得y2-2my-2n=0,然后由根與系數(shù)的關(guān)系可以得到直線AB的方程為x=my+my0+x0+2,它一定過(guò)交點(diǎn)(x0+2,-y0).
解答:解:(1)證明:由題意可知:動(dòng)點(diǎn)M到定點(diǎn)F(1,0)的距離等于M到定直線x=-1的距離
根據(jù)拋物線的定義可知,M的軌跡是拋物線
所以拋物線方程為:y2=4x
(2)
(i)設(shè)A(x1,y1),B(x2,y2),
lAB:y=kx+b,(b≠0)由
y=kx+b
y2=4x
消去y得:k2x2+(2bk-4)kx+b2=0,x1x2=
b2
k2

∵OA⊥OB,∴
OA
OB
=0
,∴x1x2+y1y2=0,y1y2=
4b
k

所以x1x2+(x1x22=0,b≠0,∴b=-2k,∴直線AB過(guò)定點(diǎn)M(1,0),
(ii)設(shè)p(x0,y0)設(shè)AB的方程為y=mx+n,代入y2=2x
得y2-2my=-2n=0
∴y1+y2=2m,y1y2-2n其中y1,y2分別是A,B的縱坐標(biāo)
∵AP⊥PB∴kmax•kmin=-1
y1-y0
x1-x0
y2-y0
x2-x0
=1

∴(y1+y0)(y2+y0)=-4
•y1y2+(y1+y2)y0+y02-4=0
(-2n)+2my0+2x0+4=0,
=my0+x0+2
直線PQ的方程為x=my+my0+x0+2,
即x=m(y+y0)+x0+2,它一定過(guò)點(diǎn)(x0+2,-y0
點(diǎn)評(píng):本題考查直線與圓錐的綜合問(wèn)題,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意計(jì)算能力的培養(yǎng),直線和圓錐曲線的綜合題是高考的重點(diǎn)內(nèi)容,每年必考.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知?jiǎng)狱c(diǎn)M到定點(diǎn)F(1,0)的距離與到定直線l:x=-1的距離相等,點(diǎn)C在直線l上.
(1)求動(dòng)點(diǎn)M的軌跡方程;
(2)設(shè)過(guò)定點(diǎn)F,法向量
n
=(4,-3)
的直線與(1)中的軌跡相交于A,B兩點(diǎn),判斷∠ACB能否為鈍角并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知?jiǎng)狱c(diǎn)M到定點(diǎn)F(1,0)的距離與到定直線l:x=-1的距離相等,點(diǎn)C在直線l上.
(1)求動(dòng)點(diǎn)M的軌跡方程;
(2)設(shè)過(guò)定點(diǎn)F,法向量
n
=(4,-3)
的直線與(1)中的軌跡相交于A,B兩點(diǎn)且點(diǎn)A在x軸的上方,判斷∠ACB能否為鈍角并說(shuō)明理由.進(jìn)一步研究∠ABC為鈍角時(shí)點(diǎn)C縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知?jiǎng)狱c(diǎn)M到定點(diǎn)F(1,0)的距離比M到定直線x=-2的距離小1.
(1)求證:M點(diǎn)的軌跡是拋物線,并求出其方程;
(2)我們知道:“過(guò)圓上任意一點(diǎn)P,任意作互相垂直的弦PA、PB,則弦AB必過(guò)圓心”(定點(diǎn)).受此啟發(fā),研究下面問(wèn)題:
對(duì)于拋物線y2=2px(p>0)上某一定點(diǎn)P(非頂點(diǎn)),過(guò)P任意作互相垂直的弦PA、PB,弦AB是否經(jīng)過(guò)定點(diǎn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知?jiǎng)狱c(diǎn)M到定點(diǎn)F(1,0)的距離比M到定直線x=-2的距離小1.
(1)求證:M點(diǎn)的軌跡是拋物線,并求出其方程;
(2)大家知道,過(guò)圓上任意一點(diǎn)P,任意作互相垂直的弦PA、PB,則弦AB必過(guò)圓心(定點(diǎn)).受此啟發(fā),研究下面問(wèn)題:
1過(guò)(1)中的拋物線的頂點(diǎn)O任意作互相垂直的弦OA、OB,問(wèn):弦AB是否經(jīng)過(guò)一個(gè)定點(diǎn)?若經(jīng)過(guò),請(qǐng)求出定點(diǎn)坐標(biāo),否則說(shuō)明理由;2研究:對(duì)于拋物線上某一定點(diǎn)P(非頂點(diǎn)),過(guò)P任意作互相垂直的弦PA、PB,弦AB是否經(jīng)過(guò)定點(diǎn)?

查看答案和解析>>

同步練習(xí)冊(cè)答案