【題目】下列說(shuō)法中不正確的序號(hào)為____________.
①若函數(shù)在上單調(diào)遞減,則實(shí)數(shù)的取值范圍是;
②函數(shù)是偶函數(shù),但不是奇函數(shù);
③已知函數(shù)的定義域?yàn)?/span>,則函數(shù)的定義域是;
④若函數(shù)在上有最小值-4,(,為非零常數(shù)),則函數(shù) 在上有最大值6.
【答案】②③
【解析】
利用分離常數(shù)法和反比例函數(shù)的單調(diào)性可以判斷①正確;由函數(shù)奇偶性的定義及判定方法可以判斷②錯(cuò)誤;根據(jù)復(fù)合函數(shù)定義域的求法可以判斷③錯(cuò)誤;根據(jù)奇函數(shù)的性質(zhì)求最大值可以判斷④正確.
函數(shù),又在上單調(diào)遞減,根據(jù)反比例函數(shù)的性質(zhì),得,解得,故①正確;
函數(shù)的定義域?yàn)?/span>,又,根據(jù)函數(shù)奇偶性的定義判斷函數(shù)既是奇函數(shù)又是偶函數(shù),故②錯(cuò)誤;
函數(shù)的定義域?yàn)?/span>,即,則,所以函數(shù)的定義域是,故③錯(cuò)誤;
令,則,,
由函數(shù)的性質(zhì)得,函數(shù)為上奇函數(shù),且
所以,故④正確.
故答案為②③.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, 已知四邊形ABCD和BCEG均為直角梯形,AD∥BC,CE∥BG,且,平面ABCD⊥平面BCEG,BC=CD=CE=2AD=2BG=2.
(1)求證:EC⊥CD;
(2)求證:AG∥平面BDE;
(3)求:幾何體EG-ABCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)的定義域?yàn)?/span>R,并且圖象關(guān)于y軸對(duì)稱,當(dāng)x≤-1時(shí),y=f(x)的圖象是經(jīng)過(guò)點(diǎn)(-2,0)與(-1,1)的射線,又在y=f(x)的圖象中有一部分是頂點(diǎn)在(0,2),且經(jīng)過(guò)點(diǎn)(1,1)的一段拋物線.
(1)試求出函數(shù)f(x)的表達(dá)式,作出其圖象;
(2)根據(jù)圖象說(shuō)出函數(shù)的單調(diào)區(qū)間,以及在每一個(gè)單調(diào)區(qū)間上函數(shù)是增函數(shù)還是減函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=ax2-1-lnx,其中a∈R.
(1)若a=0,求過(guò)點(diǎn)(0,-1)且與曲線y=f(x)相切的直線方程;
(2)若函數(shù)f(x)有兩個(gè)零點(diǎn)x1,x2,
① 求a的取值范圍;
② 求證:f ′(x1)+f ′(x2)<0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是一塊地皮,其中, 是直線段,曲線段是拋物線的一部分,且點(diǎn)是該拋物線的頂點(diǎn), 所在的直線是該拋物線的對(duì)稱軸.經(jīng)測(cè)量, km, km, .現(xiàn)要從這塊地皮中劃一個(gè)矩形來(lái)建造草坪,其中點(diǎn)在曲線段上,點(diǎn), 在直線段上,點(diǎn)在直線段上,設(shè)km,矩形草坪的面積為km2.
(1)求,并寫(xiě)出定義域;
(2)當(dāng)為多少時(shí),矩形草坪的面積最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l:y=﹣x+1與橢圓C: =1(a>b>0))相交于不同的兩點(diǎn)A、B,且線段AB的中點(diǎn)P的坐標(biāo)為( , )
(1)求橢圓C離心率;
(2)設(shè)O為坐標(biāo)原點(diǎn),且2|OP|=|AB|,求橢圓C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某研究型學(xué)習(xí)小組調(diào)查研究學(xué)生使用智能手機(jī)對(duì)學(xué)習(xí)的影響,部分統(tǒng)計(jì)數(shù)據(jù)如右表,則下列說(shuō)法正確的是( )
使用智能手機(jī) | 不使用智能手機(jī) | 總計(jì) | |
學(xué)習(xí)成績(jī)優(yōu)秀 | 4 | 8 | 12 |
學(xué)習(xí)成績(jī)不優(yōu)秀 | 16 | 2 | 18 |
總計(jì) | 20 | 10 | 30 |
參考公式: ,其中.
參考數(shù)據(jù):
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
A. 有99.9%的把握認(rèn)為使用智能手機(jī)對(duì)學(xué)習(xí)有影響.
B. 有99.9%的把握認(rèn)為使用智能手機(jī)對(duì)學(xué)習(xí)無(wú)影響.
C. 在犯錯(cuò)誤的概率不超過(guò)0.005的前提下認(rèn)為使用智能手機(jī)對(duì)學(xué)習(xí)有影響.
D. 在犯錯(cuò)誤的概率不超過(guò)0.005的前提下認(rèn)為使用智能手機(jī)對(duì)學(xué)習(xí)無(wú)影響.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲乙兩地相距,貨車(chē)從甲地勻速行駛到乙地,速度不得超過(guò),已知貨車(chē)每小時(shí)的運(yùn)輸成本(單位:圓)由可變本和固定組成組成,可變成本是速度平方的倍,固定成本為元.
(1)將全程勻速勻速成本(元)表示為速度的函數(shù),并指出這個(gè)函數(shù)的定義域;
(2)若,為了使全程運(yùn)輸成本最小,貨車(chē)應(yīng)以多大的速度行駛?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】宜昌市擬在2020年點(diǎn)軍奧體中心落成后申辦2022年湖北省省運(yùn)會(huì),據(jù)了解,目前武漢,襄陽(yáng),黃石等申辦城市因市民擔(dān)心賽事費(fèi)用超支而準(zhǔn)備相繼退出,某機(jī)構(gòu)為調(diào)查宜昌市市民對(duì)申辦省運(yùn)會(huì)的態(tài)度,選了某小區(qū)的100位居民調(diào)查結(jié)果統(tǒng)計(jì)如下:
支持 | 不支持 | 合計(jì) | |
年齡不大于50歲 | 80 | ||
年齡大于50歲 | 10 | ||
合計(jì) | 70 | 100 |
(1)根據(jù)已知數(shù)據(jù),把表格數(shù)據(jù)填寫(xiě)完整;
(2)能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為不同年齡與支持申辦省運(yùn)會(huì)無(wú)關(guān)?
(3)已知在被調(diào)查的年齡大于50歲的支持者中有5名女性,其中2位是女教師,現(xiàn)從這5名女性中隨機(jī)抽取3人,求至多有1位教師的概率.
附: , .
0.100 | 0.050 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |