【題目】已知橢圓的左右焦點分別是,橢圓C的上頂點到直線的距離為,過且垂直于x軸的直線與橢圓C相交于M,N兩點,
且|MN|=1。
(I)求橢圓的方程;
(II)過點的直線與橢圓C相交于P,Q兩點,點),且,求直線的方程。
【答案】(I);(II).
【解析】試題分析:
(Ⅰ)由得,由得,故,求解方程組有, ,則橢圓的方程為;
(Ⅱ)設(shè)直線方程為,與橢圓的方程聯(lián)立可得,則,利用平面向量垂直的充要條件有,據(jù)此可得關(guān)于實數(shù)k的方程,解得或,經(jīng)檢驗當(dāng)不合題意,則直線的方程為.
試題解析:
(Ⅰ)由點到直線距離公式有,整理可得,
由通徑公式有,整理可得,
故, ,
, 橢圓的方程為;
(Ⅱ)設(shè)直線方程為,與橢圓的方程聯(lián)立消去得
,設(shè),則,
由得,即
,即,
,即,解得或
當(dāng)時,直線經(jīng)過點,不滿足題意,舍去,故,
所以直線的方程為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(Ⅰ)當(dāng)時,求曲線在處的切線方程;
(Ⅱ)求函數(shù)在上的最小值;
(Ⅲ)若函數(shù),當(dāng)時, 的最大值為,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(14分)在四棱錐P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E為PD的中點,PA=2AB=2.
(Ⅰ)求四棱錐P-ABCD的體積V;
(Ⅱ)若F為PC的中點,求證PC⊥平面AEF;
(Ⅲ)求證CE∥平面PAB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為(為參數(shù)),設(shè)與的交點為,當(dāng)變化時, 的軌跡為曲線.
(1)寫出的普遍方程及參數(shù)方程;
(2)以坐標(biāo)原點為極點, 軸正半軸為極軸建立極坐標(biāo)系,設(shè)曲線的極坐標(biāo)方程為, 為曲線上的動點,求點到的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為研究某種圖書每冊的成本費(元)與印刷數(shù)(千冊)的關(guān)系,收集了一些數(shù)據(jù)并作了初步處理,得到了下面的散點圖及一些統(tǒng)計量的值.
表中, .
(1)根據(jù)散點圖判斷: 與哪一個更適宜作為每冊成本費(元)與印刷數(shù)(千冊)的回歸方程類型?(只要求給出判斷,不必說明理由)
(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于的回歸方程(回歸系數(shù)的結(jié)果精確到0.01);
(3)若每冊書定價為10元,則至少應(yīng)該印刷多少千冊才能使銷售利潤不低于78840元?(假設(shè)能夠全部售出,結(jié)果精確到1)
(附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為, )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形中, , ,點是上的動點.現(xiàn)將矩形沿著對角線折成二面角,使得.
(Ⅰ)求證:當(dāng)時, ;
(Ⅱ)試求的長,使得二面角的大小為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,在區(qū)間上存在三個不同的實數(shù),使得以為邊長的三角形是直角三角形,則的取值范圍是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】知函數(shù) (、為常數(shù)),曲線在點處的切線方程是.
(1)求、的值
(2)求的最大值
(3)設(shè),證明:對任意,都有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的一個焦點在直線上,且離心率.
(1)求該橢圓的方程;
(2)若與是該橢圓上不同的兩點,且線段的中點在直線上,試證: 軸上存在定點,對于所有滿足條件的與,恒有;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com