【題目】已知,在區(qū)間上存在三個(gè)不同的實(shí)數(shù),使得以為邊長(zhǎng)的三角形是直角三角形,則的取值范圍是(

A. B.

C. D.

【答案】D

【解析】f(x)=x3﹣3x+2+m,求導(dǎo)f′(x)=3x2﹣3f′(x)=0得到x=1或者x=﹣1,

x在[0,2]內(nèi),∴函數(shù)f(x)在區(qū)間(0,1)單調(diào)遞減,在區(qū)間(1,2)單調(diào)遞增,

f(x)min=f(1)=m,f(x)max=f(2)=m+4,f(0)=m+2.

∵在區(qū)間[0,2]上存在三個(gè)不同的實(shí)數(shù)a,b,c,使得以f(a),f(b),f(c)為邊長(zhǎng)的三角形是構(gòu)成直角三角形,

2m2m+42,即m28m160,解得4m4+,

又已知m0,0m4+

故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線, ,則下列說法正確的是( )

A. 上各點(diǎn)橫坐標(biāo)伸長(zhǎng)到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個(gè)單位長(zhǎng)度,得到曲線

B. 上各點(diǎn)橫坐標(biāo)伸長(zhǎng)到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個(gè)單位長(zhǎng)度,得到曲線

C. 把曲線向右平移個(gè)單位長(zhǎng)度,再把得到的曲線上各點(diǎn)橫坐標(biāo)縮短到原來的,縱坐標(biāo)不變,得到曲線

D. 把曲線向右平移個(gè)單位長(zhǎng)度,再把得到的曲線上各點(diǎn)橫坐標(biāo)縮短到原來的,縱坐標(biāo)不變,得到曲線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為參數(shù)),設(shè)的交點(diǎn)為,當(dāng)變化時(shí), 的軌跡為曲線.

(1)寫出的普遍方程及參數(shù)方程;

(2)以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,設(shè)曲線的極坐標(biāo)方程為 為曲線上的動(dòng)點(diǎn),求點(diǎn)的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左右焦點(diǎn)分別是,橢圓C的上頂點(diǎn)到直線的距離為,過且垂直于x軸的直線與橢圓C相交于M,N兩點(diǎn),

且|MN|=1

I)求橢圓的方程;

II過點(diǎn)的直線與橢圓C相交于PQ兩點(diǎn),點(diǎn)),且,求直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】通過隨機(jī)詢問某地100名高中學(xué)生在選擇座位時(shí)是否挑同桌,得到如下列聯(lián)表:

男生

女生

合計(jì)

挑同桌

30

40

70

不挑同桌

20

10

30

總計(jì)

50

50

100

從這50名男生中按是否挑同桌采取分層抽樣的方法抽取一個(gè)容量為5的樣本,現(xiàn)從這5人中隨機(jī)選取3人做深度采訪,求這3名學(xué)生中至少有2名要挑同桌的概率;

根據(jù)以上列聯(lián)表,是否有以上的把握認(rèn)為“性別與在選擇座位時(shí)是否挑同桌”有關(guān)?

下面的臨界值表供參考:

參考公式: ,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】是定義在上且滿足如下條件的函數(shù)組成的集合:①對(duì)任意的,都有②存在常數(shù)使得對(duì)任意的,都有.

1)設(shè)是否屬于?說明理由;

2)若如果存在使得證明:這樣的是唯一的;

3)設(shè)試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx=x2+alnx

1)若a=﹣1,求函數(shù)fx)的極值,并指出極大值還是極小值;

2)若a=1,求函數(shù)fx)在[1,e]上的最值;

3)若a=1,求證:在區(qū)間[1,+∞)上,函數(shù)fx)的圖象在gx=x3的圖象下方.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD是邊長(zhǎng)為3的正方形,DE平面ABCD,AFDE,DE=3AF,BE與平面ABCD所成角為60°.

(1)求二面角F-BE-D的余弦值;

(2)設(shè)點(diǎn)M是線段BD上一個(gè)動(dòng)點(diǎn),試確定點(diǎn)M的位置,使得AM平面BEF,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四面體中,,.

(1)證明:平面平面

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案