13.心理學(xué)家發(fā)現(xiàn)視覺和空間能力與性別有關(guān),某數(shù)學(xué)興趣小組為了驗(yàn)證這個(gè)結(jié)論,從興趣小組中按分層抽樣的方法抽取50名同學(xué)(男30女20),給所有同學(xué)幾何題和代數(shù)各一題,讓各位同學(xué)自由選擇一道題進(jìn)行解答.選情況如下表:(單位:人)
幾何題代數(shù)題總計(jì)
男同學(xué)30830
女同學(xué)81220
總計(jì)302050
(1)能否據(jù)此判斷有97.5%的把握認(rèn)為視覺和空間能力與性別有關(guān)?
(2)經(jīng)過多次測試后,女生甲每次解答一道幾何題所用的時(shí)間在5---7分鐘,女生乙每次解答一道幾何題所用的時(shí)間在6-8分鐘,現(xiàn)甲、乙各解同一道幾何題,求乙比甲先解答完的概率.
附表及公式
P(k2≥k)0.150.100.050.0250.0100,0050.001
k2.0722.7063.8415.0246.6357.87910.828
k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

分析 (1)根據(jù)表中所給的數(shù)據(jù),計(jì)算觀測值K2,觀測值同臨界值進(jìn)行比較,得出概率結(jié)論;
(2)設(shè)甲、乙解答一道幾何題的時(shí)間分別為x,y分鐘,繪制基本事件滿足的區(qū)域,由幾何概型公式即可求得乙比甲先解答完的概率P(A).

解答 解:(1)由表中數(shù)據(jù)得K2的觀測值K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$=$\frac{50×(22×12-8×8)}{30×20×30×10}$≈5.024,
∴根據(jù)統(tǒng)計(jì)有97.5%的把握認(rèn)為視覺和空間能力與性別有關(guān);
(2)設(shè)甲、乙解答一道幾何題的時(shí)間分別為x,y分鐘,則基本事件滿足的區(qū)域?yàn)?\left\{\begin{array}{l}{5≤x≤7}\\{6≤y≤8}\end{array}\right.$,(如圖所示),
設(shè)事件A為“乙比甲先做完此道題”,乙比甲先解答完的事件為A,則滿足的區(qū)域?yàn)閤>y,
∴由幾何概型P(A)=$\frac{\frac{1}{2}×1×1}{2×2}$=$\frac{1}{8}$,
∴乙比甲先解答完的概率P=$\frac{1}{8}$.

點(diǎn)評 本題主要考查獨(dú)立性檢驗(yàn)的應(yīng)用,考查幾何概型公式,考查數(shù)形結(jié)合思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,在△ABC中,∠BAC的平分線交BC于D,交△ABC的外接圓于E,延長AC交△DCE的外接圓于F
(1)求證:BD=DF;
(2)若AD=3,AE=5,求EF的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)矩陣A=$[\begin{array}{l}{1}&{-2}\\{3}&{-7}\end{array}]$的逆矩陣為A-1,矩陣B滿足AB=$[\begin{array}{l}{3}\\{1}\end{array}]$,求 A-1,B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知曲線C1:x2+y2-2x-4y+m=0.
(1)若曲線C1是一個(gè)圓,且點(diǎn)P(1,1)在圓C1外,求實(shí)數(shù)m的取值范圍;
(2)當(dāng)m=4時(shí),曲線C1關(guān)于直線x+y=0對稱的曲線為C2.設(shè)P為平面上的點(diǎn),滿足:存在過P點(diǎn)的無窮多對互相垂直的直線L1,L2,它們分別與曲線C1和曲線C2相交,且直線L1被曲線C1截得的弦長與直線L2被曲線C2截得的弦長總相等.
(1)求所有滿足條件的點(diǎn)P的坐標(biāo);
(2)若直線L1被曲線C1截得的弦為MN,直線L2被曲線C2截得的弦為RS,設(shè)△PMR與△PNS的面積分別為S1與S2,試探究S1•S2是否為定值?若是,求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在等比數(shù)列{an}中,a1=2,a3,a2+a4,a5成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足b1+$\frac{_{2}}{2}$+…+$\frac{_{n}}{n}$=an(n∈N*),{bn}的前n項(xiàng)和為Sn,求使Sn-nan+6≥0成立的正整數(shù)n的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.語文老師要從10篇課文中隨機(jī)抽3篇讓學(xué)生背誦,某學(xué)生只能背誦其中的6篇,求:
( I)抽到他能背誦的課文的數(shù)量的分布列;
( II)他能及格的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.10件產(chǎn)品中有3件次品,不放回的抽取2件,每次抽1件,在已知第1次抽出的是次品的條件下,第2次抽到仍為次品的概率為( 。
A.$\frac{1}{45}$B.$\frac{1}{15}$C.$\frac{2}{9}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.直線l1的傾斜角的余弦為-$\frac{1}{2}$,直線l2的傾斜角的正切值為$\frac{1}{\sqrt{3}}$,則l1與l2的關(guān)系是垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.如圖莖葉圖記錄了在某項(xiàng)體育比賽中,七位裁判為一名選手打出的分?jǐn)?shù),則去掉一個(gè)最高分和一個(gè)最低分后,所剩數(shù)據(jù)的平均值為92,方差為2.8.

查看答案和解析>>

同步練習(xí)冊答案