【題目】為了調(diào)查某品牌飲料的某種食品添加劑是否超標(biāo),現(xiàn)對該品牌下的兩種飲料一種是碳酸飲料含二氧化碳,另一種是果汁飲料不含二氧化碳進行檢測,現(xiàn)隨機抽取了碳酸飲料、果汁飲料各10均是組成的一個樣本,進行了檢測,得到了如下莖葉圖根據(jù)國家食品安全規(guī)定當(dāng)該種添加劑的指標(biāo)大于毫克為偏高,反之即為正常.

1)依據(jù)上述樣本數(shù)據(jù),完成下列列聯(lián)表,并判斷能否在犯錯誤的概率不超過的前提下認為食品添加劑是否偏高與是否含二氧化碳有關(guān)系?

正常

偏高

合計

碳酸飲料

果汁飲料

合計

2)現(xiàn)從食品添加劑偏高的樣本中隨機抽取2瓶飲料去做其它檢測,求這兩種飲料都被抽到的概率.

參考公式:,其中

參考數(shù)據(jù):

【答案】1)見解析,能在犯錯誤的概率不超過的前提下認為食品添加劑是否偏高與是否含二氧化碳有關(guān)系.(2

【解析】

1)由莖葉圖正確畫出二維列聯(lián)表,再計算的值,最后做出總結(jié);

2)由莖葉圖知食品添加劑偏高的樣本中碳酸飲料1瓶,果汁飲料5瓶設(shè)碳酸飲料為a,果汁飲料b1,b2,b3b4,b5,從這6瓶中選2瓶的所有不同選法有15種,其中兩種飲料都被抽到的不同選法有5種,兩數(shù)之比即為概率.

解:(1)由莖葉圖可得二維列聯(lián)表

正常

偏高

合計

碳酸飲料

9

1

10

果汁飲料

5

5

10

合計

14

6

20

,

所以能在犯錯誤的概率不超過的前提下認為食品添加劑是否偏高與是否含二氧化碳有關(guān)系.

2)由莖葉圖知食品添加劑偏高的樣本中碳酸飲料1瓶,果汁飲料5瓶設(shè)碳酸飲料為a,果汁飲料b1,b2,b3,b4,b5,

從這6瓶中選2瓶的所有不同選法為,,,

,,,,

, 共15種不同選法.

其中兩種飲料都被抽到的不同選法為,,

,共5種不同選法,

故所求概率為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)命題對任意,不等式恒成立;命題q:存在,使得不等式成立.

1)若p為真命題,求實數(shù)m的取值范圍;

2)若命題p、q有且只有一個是真命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017年3月智能共享單車項目正式登陸某市,兩種車型“小綠車”、“小黃車”采用分時段計費的方式,“小綠車”每30分鐘收費不足30分鐘的部分按30分鐘計算;“小黃車”每30分鐘收費1元不足30分鐘的部分按30分鐘計算有甲、乙、丙三人相互獨立的到租車點租車騎行各租一車一次設(shè)甲、乙、丙不超過30分鐘還車的概率分別為,,三人租車時間都不會超過60分鐘甲、乙均租用“小綠車”,丙租用“小黃車”.

求甲、乙兩人所付的費用之和等于丙所付的費用的概率;

2設(shè)甲、乙、丙三人所付的費用之和為隨機變量,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知分別是的外心、內(nèi)心,不重合,的內(nèi)部或邊上,且或者的內(nèi)部或者,試求出使得等式成立的一個充要條件用關(guān)于的內(nèi)角的條件表示)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),函數(shù).

(1)若,求曲線在點處的切線方程;

(2)若函數(shù)有且只有一個零點,求實數(shù)的取值范圍;

(3)若函數(shù)恒成立,求實數(shù)的取值范圍.(是自然對數(shù)的底數(shù),)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某工廠生產(chǎn)的某種產(chǎn)品中抽取1000件,測量這些產(chǎn)品的一項質(zhì)量指標(biāo)值,由測量結(jié)果得如下頻率分布直方圖:

(1)求這1000件產(chǎn)品質(zhì)量指標(biāo)值的樣本平均數(shù)和樣本方差(同一組數(shù)據(jù)用該區(qū)間的中點值作代表)

(2)由頻率分布直方圖可以認為,這種產(chǎn)品的質(zhì)量指標(biāo)值服從正態(tài)分布,其中以近似為樣本平均數(shù),近似為樣本方差

(。├迷撜龖B(tài)分布,求;

(ⅱ)某用戶從該工廠購買了100件這種產(chǎn)品,記表示這100件產(chǎn)品中質(zhì)量指標(biāo)值為于區(qū)間(127.6,140)的產(chǎn)品件數(shù),利用(。┑慕Y(jié)果,求

附:.若,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的一個頂點為,且過拋物線的焦點F

(1)求橢圓C的方程及離心率;

(2)設(shè)點Q是橢圓C上一動點,試問直線上是否存在點P,使得四邊形PFQB是平行四邊形?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】第35屆牡丹花會期間,我班有5名學(xué)生參加志愿者服務(wù),服務(wù)場所是王城公園和牡丹公園.

(1)若學(xué)生甲和乙必須在同一個公園,且甲和丙不能在同一個公園,則共有多少種不同的分配方案?

(2)每名學(xué)生都被隨機分配到其中的一個公園,設(shè)分別表示5名學(xué)生分配到王城公園和牡丹公園的人數(shù),記,求隨機變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點為圓上一點,軸于點,軸于點,點滿足為坐標(biāo)原點),點的軌跡為曲線.

)求的方程;

)斜率為的直線交曲線于不同的兩點、,是否存在定點,使得直線的斜率之和恒為0.若存在,則求出點的坐標(biāo);若不存在,則請說明理由.

查看答案和解析>>

同步練習(xí)冊答案