設(shè)橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的右焦點為F,C為橢圓短軸上的端點,向量
FC
繞F點順時針旋轉(zhuǎn)90°后得到向量
FC′
,其中C′
點恰好落在橢圓右準線上,則該橢圓的離心率為______.
設(shè)F(c,0),C(0,b)
由題意可知|FC|=|FC'|∠CFC'=90° 所以△CFC'是等腰直角三角形
∴|FC|=|FC'|=a
∵∠CFC'=90°
∴|CC'|=
2
a
∴右準線為x=
a2
c
=
2
a 即
a
c
=
2

∴離心率e=
2
2

故答案為
2
2
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:填空題

在平面直角坐標系xOy中,已知橢圓
x2
4
+
y2
3
=1的左焦點為F,直線x-y-1=0,x-y+1=0與橢圓分別相交于點A,B,C,D,則AF+BF+CF+DF=______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

點A、B分別是橢圓
x2
36
+
y2
20
=1長軸的左、右焦點,點F是橢圓的右焦點.點P在橢圓上,且位于x軸上方,PA⊥PF.
(1)求P點的坐標;
(2)設(shè)M是橢圓長軸AB上的一點,M到直線AP的距離等于|MB|,求橢圓上的點到點M的距離d的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,面ABC⊥α,D為AB的中點,|AB|=2,∠CDB=60°,P為α內(nèi)的動點,且P到直線CD的距離為
3
,則∠APB的最大值為(  )
A.30°B.60°C.90°D.120°

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓
x2
9
+
y2
2
=1的焦點為F1、F2,點P在橢圓上,若|PF1|=4,則|PF2|=______,∠F1PF2的大小為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

定點N(1,0),動點A、B分別在圖中拋物線y2=4x及橢圓
x2
4
+
y2
3
=1
的實線部分上運動,且ABx軸,則△NAB的周長l取值范圍是( 。
A.(
2
3
,2
B.(
10
3
,4
C.(
51
16
,4
D.(2,4)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

給出如下四個命題:
①方程x2+y2-2x+1=0表示的圖形是圓;
②若橢圓的離心率為
2
2
,則兩個焦點與短軸的兩個端點構(gòu)成正方形;
③拋物線x=2y2的焦點坐標為(
1
8
,0
);
④雙曲線
y2
49
-
x2
25
=1的漸近線方程為y=±
5
7
x.
其中正確命題的序號是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知命題p:方程
x2
k-4
+
y2
k-6
=1
表示雙曲線;命題q:過點M(2,1)的直線與橢圓
x2
5
+
y2
k
=1
恒有公共點,若p與q中有且僅有一個為真命題,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知雙曲線方程為,則雙曲線的漸近線方程為(         ).
A.B.C.D.

查看答案和解析>>

同步練習冊答案