點(diǎn)A、B分別是橢圓
x2
36
+
y2
20
=1長(zhǎng)軸的左、右焦點(diǎn),點(diǎn)F是橢圓的右焦點(diǎn).點(diǎn)P在橢圓上,且位于x軸上方,PA⊥PF.
(1)求P點(diǎn)的坐標(biāo);
(2)設(shè)M是橢圓長(zhǎng)軸AB上的一點(diǎn),M到直線AP的距離等于|MB|,求橢圓上的點(diǎn)到點(diǎn)M的距離d的最小值.
(1)由已知可得點(diǎn)A(-6,0),F(xiàn)(4,0),設(shè)點(diǎn)P(x,y),則
AP
=(x+6,y),
FP
=(x-4,y).
由已知可得
x2
36
+
y2
20
=1
(x+6)(x-4)+y2=0
,2x2+9x-18=0,解得x=
3
2
,或x=-6.
由于y>0,只能x=
3
2
,于是y=
5
3
2
.∴點(diǎn)P的坐標(biāo)是(
3
2
,
5
3
2
).
(2)直線AP的方程是
y-0
5
3
2
-0
=
x+6
3
2
+6
,即x-
3
y+6=0.
設(shè)點(diǎn)M(m,0),則M到直線AP的距離是
|m+6|
2

于是
|m+6|
2
=|6-m|,又-6≤m≤6,解得m=2,故點(diǎn)M(2,0).
設(shè)橢圓上的點(diǎn)(x,y)到點(diǎn)M的距離為d,有 d2=(x-2)2+y2 =x2-4x+4+20-
5
9
x2 =
4
9
(x-
9
2
2+15,
∴當(dāng)x=
9
2
時(shí),d取得最小值
15
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖所示:橢圓的中心為O,F(xiàn)為焦點(diǎn),A為頂點(diǎn),準(zhǔn)線L交OA的延長(zhǎng)線于B,P、Q在橢圓上,且PD⊥L于D,QF⊥OA于F,橢圓的離心率為e,給出下列結(jié)論:
e=
|PF|
|PD|
;②e=
|QF|
|BF|
;③e=
|AO|
|BO|
;④e=
|AF|
|PF|
;⑤e=
|FO|
|AO|

其中正確命題的序號(hào)是______(寫出所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知?jiǎng)狱c(diǎn)P在橢圓
x2
25
+
y2
16
=1上,若A點(diǎn)坐標(biāo)為(3,0),且|
AM
|=1,且
PM
AM
=0,則|
PM
|的最小值是(  )
A.
2
B.
3
C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知有公共焦點(diǎn)的橢圓與雙曲線的中心為原點(diǎn),焦點(diǎn)在x軸上,左、右焦點(diǎn)分別為F1,F(xiàn)2且它們?cè)诘谝幌笙薜慕稽c(diǎn)為P,△PF1F2是以PF1為底邊的等腰三角形,雙曲線的離心率的取值范圍為(1,2),則該橢圓的離心率的取值范圍是( 。
A.(0,
1
3
B.(
1
3
,
1
2
C.(
1
3
,
2
5
D.(
2
5
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知橢圓
x2
4
+
y2
3
=1
的兩焦點(diǎn)為F1,F(xiàn)2,點(diǎn)P是橢圓內(nèi)部的一點(diǎn),則|PF1|+|PF2|的取值范圍為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)AB是橢圓的長(zhǎng)軸,點(diǎn)C在橢圓上,且∠CBA=
π
4
.若AB=4,BC=
2
,則橢圓的焦距為( 。
A.
3
3
B.
2
6
3
C.
4
6
3
D.
2
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

過(guò)橢圓
x2
2
+
y2
3
=1的下焦點(diǎn),且與圓x2+y2-3x+y+
3
2
=0相切的直線的斜率是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的右焦點(diǎn)為F,C為橢圓短軸上的端點(diǎn),向量
FC
繞F點(diǎn)順時(shí)針旋轉(zhuǎn)90°后得到向量
FC′
,其中C′
點(diǎn)恰好落在橢圓右準(zhǔn)線上,則該橢圓的離心率為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C的焦點(diǎn)在x軸上,一個(gè)頂點(diǎn)的坐標(biāo)是(0,1),離心率等于
2
5
5

(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)橢圓C的右焦點(diǎn)F作直線l交橢圓C于A,B兩點(diǎn),交y軸于M點(diǎn),若
MA
=λ1
AF
MB
=λ2
BF
,求證:λ12為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案