如圖,在平面直角坐標系xoy中,以ox軸為始邊做兩個銳角α,β,它們的終邊分別與單位圓相交于A,B兩點,已知A,B的橫坐標分別為
2
10
,
2
5
5
.求:
cos(π-α)sin(-π-α)
cos(
11π
2
-β)tan(3π+β)
分析:根據(jù)三角函數(shù)的定義,可知:cosα=
2
10
,cosβ=
2
5
5
,利用平方關(guān)系及商數(shù)關(guān)系可求出sinα,sinβ,tanβ,再利用誘導公式化簡,即可求得結(jié)論.
解答:解:由題意得:cosα=
2
10
,cosβ=
2
5
5

∵α、β為銳角,∴sinα=
7
2
10
,sinβ=
5
5

tanβ=
1
2

cos(π-α)sin(-π-α)
cos(
11π
2
-β)tan(3π+β)
=
-cosα.sinα
sinβ.tanβ
=
-
2
10
.
7
2
10
5
5
.
1
2
=-
7
5
25
點評:本題的考點是三角函數(shù)的化簡求值,考查三角函數(shù)的定義及誘導公式的運用,解題是合理運用三角函數(shù)的定義.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△OAB中,點P是線段OB及線段AB延長線所圍成的陰影區(qū)域(含邊界)的任意一點,且
OP
=x
OA
+y
OB
則在直角坐標平面內(nèi),實數(shù)對(x,y)所示的區(qū)域在直線y=4的下側(cè)部分的面積是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

1、如圖,在直角坐標平面內(nèi)有一個邊長為a,中心在原點O的正六邊形ABCDEF,AB∥Ox.直線L:y=kx+t(k為常數(shù))與正六邊形交于M、N兩點,記△OMN的面積為S,則函數(shù)S=f(t)的奇偶性為
偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標平面內(nèi)有一個邊長為a、中心在原點O的正六邊形ABCDEF,AB∥Ox.直線L:y=kx+t(k為常數(shù))與正六邊形交于M、N兩點,記△OMN的面積為S,則函數(shù)S=f(t)的奇偶性為( 。
A、偶函數(shù)B、奇函數(shù)C、不是奇函數(shù),也不是偶函數(shù)D、奇偶性與k有關(guān)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•海珠區(qū)一模)如圖,在直角坐標平面內(nèi),射線OT落在60°的終邊上,任作一條射線OA,OA落在∠xOT內(nèi)的概率是
1
6
1
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,一定長m的線段,其端點AB分別在x軸、y軸上滑動,設點M滿足(λ是大于0,且不等于1的常數(shù)).

試問:是否存在定點E、F,使|ME|、|MB|、|MF|成等差數(shù)列?若存在,求出E、F的坐標;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案