7.下列表述正確的是( 。
A.過平面β外一點(diǎn)可以作無數(shù)條直線與平面β平行
B.過直線l外一點(diǎn)可作無數(shù)條直線平行于l
C.垂直于兩條異面直線的空間直線只有一條
D.空間三個(gè)平面最多把空間分成七部分

分析 利用線面平行、垂直判定定理和性質(zhì)定理,分別進(jìn)行判斷,即可得出結(jié)論.

解答 解:因?yàn)檫^平面外一點(diǎn)有無數(shù)條直線與這個(gè)平面平行,這些直線在與這個(gè)平面平行的平面內(nèi),故A正確;
過直線l外一點(diǎn)有且只有一條直線平行于l,故B不正確;
兩條異面直線可以確定兩個(gè)平行平面,與兩個(gè)平行平面垂直的直線有無數(shù)條,∴垂直于兩條異面直線的直線有無數(shù)條,故C不正確;
空間三個(gè)平面最多把空間分成八部分,故D不正確.
故選:A.

點(diǎn)評 本題考查兩條直線之間的關(guān)系,考查線與面之間的關(guān)系,考查面與面之間的關(guān)系,包括平行與垂直,本題是一個(gè)判定定理和性質(zhì)定理的綜合題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知y=f(x)+2x2是奇函數(shù),且f(1)=2,若g(x)=f(x)+2x,則g(-1)=-8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.函數(shù)f(x)=$\frac{ax}{ax+1}$,a≠0,a為常數(shù),方程f(x)=x有唯一實(shí)數(shù)解
(1)求f(x)
(2)x1=2,xn+1=f(xn),n∈N*,求證:數(shù)列{$\frac{1}{{x}_{n}}$}為等差數(shù)列,并求xn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在平面直角坐標(biāo)系xOy中,已知四邊形ABCD是平行四邊形,$\overrightarrow{AB}$=(3,1),$\overrightarrow{AD}$=(2,-2),則$\overrightarrow{AC}•\overrightarrow{BD}$( 。
A.2B.-2C.-10D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)f(x)=sinωx(ω>0)在區(qū)間(0,$\frac{π}{3}$)上單調(diào)遞增且圖象過($\frac{2π}{3}$,0),則ω=$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在△ABC中,角A,B,C對應(yīng)的邊長分別為a,b,c,且a=4,b=3,sin(A+C)=$\frac{3}{5}$.
(1)求sinA的值;
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知雙曲線C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率為$\sqrt{3}$,若拋物線C2:y2=2px(p>0)的焦點(diǎn)到雙曲線C1的漸近線的距離為$\sqrt{2}$,則拋物線C2的方程為(  )
A.y2=2$\sqrt{3}$xB.y2=4$\sqrt{3}$xC.y2=4xD.y2=6x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知F是雙曲線C:$\frac{x^2}{16}-\frac{y^2}{9}$=1的右焦點(diǎn),P是C的左支上一點(diǎn),A(0,$\sqrt{11}$).則△APF的周長的最小值為20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.執(zhí)行如圖的程序框圖,則輸出的S=$\frac{25}{12}$.

查看答案和解析>>

同步練習(xí)冊答案