分析 (1)方程f(x)=x有唯一解,求出a的值,從而求出函數(shù)的表達(dá)式,
(2)由題意可知,xn+1=$\frac{{x}_{n}}{{x}_{n}-1}$,繼而得到$\frac{1}{{x}_{n+1}}$-$\frac{1}{{x}_{n}}$=1,數(shù)列{$\frac{1}{{x}_{n}}$}是以$\frac{1}{2}$為首項(xiàng),以1為公差的等差數(shù)列,即可求出通項(xiàng)公式.
解答 解:(1)f(x)=$\frac{ax}{ax+1}$,a≠0,a為常數(shù),方程f(x)=x,
∴ax2+x=ax,
即ax2+x(1-a)=0,
∴△=(1-a)2=0,
解得a=1,
∴f(x)=$\frac{x}{x+1}$,
(2)xn+1=f(xn),
∴xn+1=$\frac{{x}_{n}}{{x}_{n}-1}$,
∴xn+1xn-xn+1=xn,
∴$\frac{1}{{x}_{n+1}}$-$\frac{1}{{x}_{n}}$=1,
∵x1=2,
∴$\frac{1}{{x}_{1}}$=$\frac{1}{2}$,
∴數(shù)列{$\frac{1}{{x}_{n}}$}是以$\frac{1}{2}$為首項(xiàng),以1為公差的等差數(shù)列,
∴$\frac{1}{{x}_{n}}$=$\frac{1}{2}$+(n-1)=n-$\frac{1}{2}$,
∴xn=$\frac{2}{2n-1}$,
當(dāng)n=1時(shí),成立,
故xn=$\frac{2}{2n-1}$.
點(diǎn)評(píng) 本題考查等差數(shù)列的證明,考查數(shù)列的通項(xiàng)公式,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)的周期為π | B. | f(x)在(-$\frac{π}{2}$,0)上單調(diào)遞減 | ||
C. | f(x)的最大值為$\sqrt{2}$ | D. | f(x)的圖象關(guān)于直線x=π對(duì)稱 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,+∞) | B. | ($\frac{35}{6}$,+∞) | C. | (-∞,0] | D. | (-∞,$\frac{3}{2}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 過平面β外一點(diǎn)可以作無數(shù)條直線與平面β平行 | |
B. | 過直線l外一點(diǎn)可作無數(shù)條直線平行于l | |
C. | 垂直于兩條異面直線的空間直線只有一條 | |
D. | 空間三個(gè)平面最多把空間分成七部分 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com