設(shè)Sn是正項(xiàng)數(shù)列{an}的前n項(xiàng)和,且Sn=
1
3
a
2
n
+
1
2
an
(1)求an;
(2)設(shè)
bn
=
3
4an+3
(n∈N+),且數(shù)列{bn}的前n項(xiàng)和為Tn,試比較Tn
1
4
的大小.
考點(diǎn):數(shù)列與不等式的綜合
專題:等差數(shù)列與等比數(shù)列
分析:(1)由已知得a1=
3
2
,an-an-1=
3
2
,數(shù)列{an}為等差數(shù)列.由此能求出an=
3
2
n.
(2)由bn=
1
(2n+1)2
=
1
4n2+4n+1
1
4n2+4n
1
4
1
n
-
1
n+1
),能推導(dǎo)出Tn
1
4
解答: 解:(1)由已知可得a1=
1
3
a
2
1
+
1
2
a1,a1>0,所以a1=
3
2

當(dāng)n≥2時(shí),有an=Sn-Sn-1=
1
3
a
2
n
+
1
2
an-(
1
3
a
2
n-1
+
1
2
an-1
=
1
3
a
2
n
-
a
2
n-1
)+
1
2
(an-an-1),
∴(
a
 
n
+an-1)(an-an-1-
3
2
)=0,
又an>0,所以有an-an-1=
3
2
,
數(shù)列{an}為等差數(shù)列.
所以an=
3
2
n.6分
(2)由(1)可知bn=
1
(2n+1)2
=
1
4n2+4n+1
1
4n2+4n
1
4
1
n
-
1
n+1
),
所以有Tn=b1+b2+…+bn
1
4
[(
1
1
-
1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1
)]
=
1
4
(1-
1
n+1
)<
1
4
.12分.
點(diǎn)評(píng):本題考查數(shù)列的通項(xiàng)公式的求法,考查兩式大小的比較,解題時(shí)要注意裂項(xiàng)求和法的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,b>0,且a≠b,比較
a2
b
+
b2
a
與a+b的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC是邊長(zhǎng)為2
3
的正三角形,EF為△ABC的外接圓O的一條直徑,M為△ABC的邊上的動(dòng)點(diǎn),則
ME
FM
的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下表是降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)的幾組對(duì)應(yīng)數(shù)據(jù),根據(jù)表中提供的數(shù)據(jù),求出y關(guān)于x的線性回歸方程為
y
=0.7x+0.35,那么表中m值為( 。
x3456
y2.5m44.5
A、4B、3.15C、4.5D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ex+ax-1(P為自然對(duì)數(shù)的底數(shù)).
(1)當(dāng)a=1時(shí),求過點(diǎn)(1,f(1))處的切線與坐標(biāo)軸圍成的面積:
(2)試討論f(x)的單調(diào)性;
(3)若對(duì)于任意的x1∈(0,1),總存在x2∈[0,1]使得f(x1)-x12≥ex-x2-1恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校甲、乙兩個(gè)班級(jí)各有5名編號(hào)為1,2,3,4,5的學(xué)生進(jìn)行投籃練習(xí),每人投10次,
投中的次數(shù)如下表:
學(xué)生1號(hào)2號(hào)3號(hào)4號(hào)5號(hào)
甲班67787
乙班67679
則以上兩組數(shù)據(jù)的方差中較小的一個(gè)為s2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x|m-x|(x∈R),且f(4)=0.
(1)作出函數(shù)f(x)的圖象,并指出函數(shù)f(x)的單調(diào)區(qū)間;
(2)根據(jù)圖象寫出不等式f(x)>0的解集;
(3)求當(dāng)x∈[1,5]時(shí)函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知橢圓
x2
32
+
y2
16
=1內(nèi)有一點(diǎn)B(2,2),F(xiàn)1、F2是其左、右焦點(diǎn),M為橢圓上的動(dòng)點(diǎn),則|
MF1
|+|
MB
|的最小值為(  )
A、4
2
B、6
2
C、4
D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

利用洛必達(dá)法則求下列極限:
lim
x→0
tanax
sinbx

查看答案和解析>>

同步練習(xí)冊(cè)答案