9.函數(shù)y=x4-4x+3在區(qū)間[-2,3]上的最小值為0.

分析 求導數(shù)得到y(tǒng)′=4(x3-1),根據(jù)y=x3的單調(diào)性便可判斷y′在區(qū)間[-2,3]上的符號,從而得出該函數(shù)的最小值.

解答 解:y′=4x3-4=4(x3-1);
∴x∈[-2,1)時,y′<0,x∈(1,3]時,y′>0;
∴x=1時,該函數(shù)取最小值0.
故答案為:0.

點評 本題考查函數(shù)最值的定義及求法,根據(jù)導數(shù)符號求函數(shù)最值的方法,以及基本初等函數(shù)的求導公式.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

19.下列函數(shù)中,定義域是R且為增函數(shù)的是( 。
A.y=(x-1)2B.y=x3C.y=$\frac{1}{x}$D.y=|x|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.在紙箱內(nèi)裝有10個大小相同的黑球、白球和紅球,已知從箱中任意摸出1個球,得到黑球的概率是$\frac{2}{5}$,從箱中摸出2個球,至少得到1個白球的概率是$\frac{8}{15}$.
(1)求箱中各色球的個數(shù);
(2)從箱中任意摸出3個球,記白球的個數(shù)為ξ,求隨機變量ξ的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.設函數(shù)f(x)是定義在R上的偶函數(shù),f′(x)為其導函數(shù),當x>0時,f(x)+x•f′(x)>0,且f(1)=0,則不等式x•f(x)>0的解集為(-1,0)∪(1,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.如圖,在直三棱柱ABC-A1B1C1中,AB=BC=AC=AA1=1,D是BC的中點.
(1)求證:AD⊥平面B1C1CB;
(2)求二面角A1-BC-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.在空間直角坐標系中,以點A(4,1,9)和B(10,-1,6)為端點的線段長是( 。
A.49B.45C.7D.3$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知數(shù)列$\sqrt{2}$,2,$\sqrt{6}$,2$\sqrt{2}$,…,則$\sqrt{14}$是這個數(shù)列的第幾項(  )
A.5B.8C.7D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.下列函數(shù)中,在區(qū)間(0,+∞)上為增函數(shù)的是( 。
A.f(x)=x2+3xB.y=(x-1)2C.g(x)=2-xD.y=log0.5(x+1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.函數(shù)y=sin(x-$\frac{π}{3}$)的單調(diào)遞增區(qū)間是( 。
A.[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$],k∈ZB.[2kπ-$\frac{π}{12}$,2kπ+$\frac{5π}{12}$],k∈Z
C.[kπ-$\frac{π}{6}$,kπ+$\frac{5π}{6}$],k∈ZD.[2kπ-$\frac{π}{6}$,2kπ+$\frac{5π}{6}$],k∈Z

查看答案和解析>>

同步練習冊答案