對于集合A,B,我們把集合{(a,b)|a∈A,b∈B}記作A×B.
例如:A={1,2},B={3,4},則有A×B={(1,3),(1,4),(2,3),(2,4)},B×A={(3,1),(3,2),(4,1),(4,2)},A×A={(1,1),(1,2),(2,1),(2,2)},B×B={(3,3),(3,4),(4,3),(4,4)},
據(jù)此,試解答下列問題:
(1)已知C={m},D={1,2,3},求C×D;
(2)已知A×B={(1,2),(2,2)},求集合A,B;
(3)若A中有3個元素,B中有4個元素,試確定A×B有幾個元素.
解:(1)∵A×B={(a,b)|a∈A,b∈B}
又∵C={m},D={1,2,3},
∴C×D={(m,1),(m,2),(m,3)}.
(2)∵A×B={(a,b)|a∈A,b∈B}
又∵A×B={(1,2),(2,2)},
所以A中有元素1,2,
B中含有元素2,
即A={1,2},B={2}.
(3)∵A×B={(a,b)|a∈A,b∈B}
∴A中有a個元素,B中有b個元素時,
集合A×B中共有a×b個元素,
又∵A中有3個元素,B中有4個元素,
∴A×B中含有12個元素.
分析:(1)由已知中集合A×B={(a,b)|a∈A,b∈B}.結(jié)合C={m},D={1,2,3},即可得到答案.
(2)由A×B={(1,2),(2,2)},可得A中有兩個元素1,2,B中有一個元素2,由此可求出集合A,B;
(3)由已知中關(guān)于集合A×B的定義,我們易得A中有a個元素,B中有b個元素時,集合A×B中共有a×b個元素,由此即可得到答案.
點評:這是一道新運算類的題目,其特點一般是“新”而不“難”,處理的方法一般為:根據(jù)新運算的定義,將已知中的數(shù)據(jù)代入進行運算,易得最終結(jié)果.