7、定義在(-∞,+∞)上的奇函數(shù)f(x)和偶函數(shù)g(x)在區(qū)間(-∞,0]上的圖象關(guān)于x軸對稱,且f(x)為增函數(shù),則下列各選項(xiàng)中能使不等式f(b)-f(-a)>g(a)-g(-b)成立的序號是
(1)

(1).a(chǎn)>b>0(2).a(chǎn)<b<0(3).a(chǎn)b>0    (4).a(chǎn)b<0.
分析:先把原不等式轉(zhuǎn)化為f(b)+f(a)>g(a)-g(b),再利用條件畫出兩個(gè)函數(shù)的大致圖象,結(jié)合圖象對四個(gè)答案一一分析即可求出結(jié)果.
解答:解:由題得,不等式f(b)-f(-a)>g(a)-g(-b)?f(b)+f(a)>g(a)-g(b) 記為  ①
兩個(gè)函數(shù)的大致圖象為:f(x),g(x)的圖象在第一象限重合..
(1)當(dāng)a>b>0時(shí),f(a)=g(a)>f(b)=g(b)>f(0)=0?f(b)+f(a)=g(b)+g(a)>g(a)-g(b)  滿足①.成立
(2)當(dāng)a<b<0時(shí),g(a)=-f(a)>0,g(b)=-f(b)>0,g(a)>g(b)?f(b)+f(a)=-g(a)-g(b)<g(a)-g(b)  不滿足①舍
(3) 當(dāng)ab>0,由(1)成立(2)不成立得(3)也不成立;
(4)當(dāng)ab<0時(shí),設(shè)a>0,b<0.則f(b)+f(a)=-g(b)+g(a)=g(a)-g(b) 不滿足 ①舍.
故答案為:(1)..
點(diǎn)評:本題主要考查函數(shù)的奇偶性與單調(diào)性,是對函數(shù)基本性質(zhì)的綜合考查,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

2、定義在R上的函數(shù)f(x)最小正周期為5,且f(1)=1,則f(log264)的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在R上的奇函數(shù),其最小正周期為3,且x∈(-
3
2
,0)時(shí)
,f(x)=2-x+1則f(8)=(  )
A、4
B、2
C、
1
2
D、
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)是定義在R上的增函數(shù),則不等式f(x)>f[8(x-2)]的解集是
{x|x<
16
7
}
{x|x<
16
7
}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上的奇函數(shù),滿足f(-
3
2
+x)=f(
3
2
+x)
.當(dāng)x∈(0,
3
2
)
時(shí),f(x)=ln(x2-x+1),則函數(shù)f(x)在區(qū)間[0,6]上的零點(diǎn)個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若定義在[-2013,2013]上的函數(shù)f(x)滿足:對于任意的x1,x2∈[-2013,2013],有f(x1+x2)=f(x1)+f(x2)-2012,且x>0時(shí),有f(x)>2012,f(x)的最大、小值分別為M、N,則M+N的值為( 。

查看答案和解析>>

同步練習(xí)冊答案