10.有關(guān)部門要了解甲型H1N1流感預(yù)防知識(shí)在學(xué)校的普及情況,命制了一份有10道題的問卷到各學(xué)校做問卷調(diào)查.某中學(xué)A、B兩個(gè)班各被隨機(jī)抽取5名學(xué)生接受問卷調(diào)查,A班5名學(xué)生得分為:5、8、9、9、9,B班5名學(xué)生得分為:6、7、8、9、10.
(1)請(qǐng)你判斷A、B兩個(gè)班中哪個(gè)班的問卷得分要穩(wěn)定一些,并說明你的理由;
(2)求如果把B班5名學(xué)生的得分看成一個(gè)總體,并用簡(jiǎn)單隨機(jī)抽樣方法從中抽取樣本容量為2的樣本,求樣本平均數(shù)與總體平均數(shù)之差的絕對(duì)值不小于1的概率.

分析 (1)分別求出A、B兩個(gè)班問卷得分的平均數(shù)和平均分,由此能求出B班的問卷得分要穩(wěn)定.
(2)記“樣本平均數(shù)與總體平均數(shù)之差的絕對(duì)值不小于1”為事件M,利用列舉法能求出樣本平均數(shù)與總體平均數(shù)之差的絕對(duì)值不小于1的概率.

解答 解:(1)B班的問卷得分要穩(wěn)定一些,理由如下:
∵$\overline{x_A}=\frac{5+8+9+9+9}{5}=8$,$\overline{x_B}=\frac{6+7+8+9+10}{5}=8$,
∴${S_A}^2=\frac{{{{(5-8)}^2}+{{(8-8)}^2}+{{(9-8)}^2}+{{(9-8)}^2}+{{(9-8)}^2}}}{5}=2.4$,
${S_B}^2=\frac{{{{(6-8)}^2}+{{(7-8)}^2}+{{(8-8)}^2}+{{(9-8)}^2}+{{(10-8)}^2}}}{5}=2$,
∵$\overline{{x}_{A}}$=$\overline{{x}_{B}}$,${S_A}^2>{S_B}^2$,∴B班的問卷得分要穩(wěn)定.
(2)記“樣本平均數(shù)與總體平均數(shù)之差的絕對(duì)值不小于1”為事件M
所有的基本事件分別為:
(6,7)、(6,8)、(6,9)、(6,10)、(7,8)、(7,9)、(7,10)、(8,9)、(8,10)、(9,10),共10個(gè).
事件M包含的基本事件分別為:(6,7)、(6,8)、(8,10)、(9,10),共4個(gè)
由于事件M符合古典概型,則$P(M)=\frac{4}{10}=\frac{2}{5}$.

點(diǎn)評(píng) 本題考查概率的求法,考查平均數(shù)、方差、等可能事件概率計(jì)算公式、列舉法等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、集合思想、函數(shù)與方程思想,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)曲線y=xn+1(n∈N+)在點(diǎn)(1,1)處的切線與x軸的交點(diǎn)的橫坐標(biāo)為xn,則log2017x1+log2017x2+…+log2017x2016的值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知等差數(shù)列{an}的前5項(xiàng)和為105,且a10=2a5,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知點(diǎn)P(-3,5),Q(2,1),向量$\overrightarrow m=({-λ,1})$,若$\overrightarrow{PQ}∥\overrightarrow m$,則實(shí)數(shù)λ等于( 。
A.$\frac{4}{5}$B.-$\frac{4}{5}$C.$\frac{5}{4}$D.-$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知四面體ABCD中,∠BAC=60°,∠BAD=∠CAD=90°,$AB=\sqrt{3}$,$AC=2\sqrt{3}$,其外接球體積為$\frac{32}{3}π$,則該四面體ABCD的棱AD=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)函數(shù)$f(x)=sin(ωx-\frac{3π}{4})(ω>0)的最小正周期為π$
(Ⅰ)求ω;      
(Ⅱ)若$f(\frac{α}{2}+\frac{3π}{8})=\frac{24}{25}$,且$α∈(-\frac{π}{2},\frac{π}{2})$,求sin2α的值.
(Ⅲ)畫出函數(shù)y=f(x)在區(qū)間[0,π]上的圖象(完成列表并作圖).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在銳角△ABC中,$\sqrt{2}a=2bsinA$,則角B=$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)函數(shù)y=f(x)在定義域內(nèi)可導(dǎo),它的圖象如下圖所示,則它的導(dǎo)函數(shù)y=f'(x)圖象可能為( 。 
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)函數(shù)f(x)=lnx+$\frac{k}{x}$,k∈R.
(Ⅰ)若曲線y=f(x)在點(diǎn)(e,f(e))處的切線與直線x-2=0垂直,求出k值.
(Ⅱ)試討論f(x)的單調(diào)區(qū)間;
(Ⅲ)已知函數(shù)f(x)在x=e處取得極小值,不等式f(x)<$\frac{m}{x}$的解集為P,若M={x|e≤x≤3},且M∩P≠φ,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案