已知數(shù)列{an}是各項均不為0的等差數(shù)列,公差為d,Sn 為其前n項和,且滿足an2=S2n-1,n∈N*.數(shù)列{bn}滿足bn=,Tn為數(shù)列{bn}的前n項和.
(1)求數(shù)列{an}的通項公式和Tn;
(2)是否存在正整數(shù)m,n(1<m<n),使得T1,Tm,Tn,成等比數(shù)列?若存在,求出所有m,n的值;若不存在,請說明理由.
【答案】分析:(Ⅰ)(法一)在an2=S2n-1,令n=1,n=2,結(jié)合等差數(shù)列的通項公式可求a1=1,d=2,可求通項,而bn=,結(jié)合數(shù)列通項的特點,考慮利用裂項相消法求和
(法二):由等差數(shù)列的性質(zhì)可知,=(2n-1)an,結(jié)合已知an2=S2n-1,可求an,而bn=,結(jié)合數(shù)列通項的特點,考慮利用裂項相消法求和
(Ⅱ)由(I)可求T1=,Tm=,Tn=,代入已知可得
法一:由可得,>0可求m的范圍,結(jié)合m∈N且m>1可求m,n
法二:由可得,結(jié)合m∈N且m>1可求m,n
解答:解:(Ⅰ)(法一)在an2=S2n-1,令n=1,n=2可得

∴a1=1,d=2
∴an=2n-1
∵bn===
)=(1-)=
(法二)∵{an}是等差數(shù)列,

=(2n-1)an
由an2=S2n-1,得an2=(2n-1)an,
又an≠0,
∴an=2n-1
∵bn===
)=(1-)=
(Ⅱ)∵T1=,Tm=,Tn=
若T1,Tm,Tn,成等比數(shù)列,則

法一:由可得,>0
即-2m2+4m+1>0

∵m∈N且m>1
∴m=2,此時n=12
∴當且僅當m=2,n=12時,T1,Tm,Tn,成等比數(shù)
法二:∵

∴2m2-4m-1<0

∵m∈N且m>1
∴m=2,此時n=12
∴當且僅當m=2,n=12時,T1,Tm,Tn,成等比數(shù)
點評:本題主要考查了等差數(shù)列的性質(zhì)、等差數(shù)列的通項公式及求和公式的綜合應用,裂項求和方法的應用,本題具有一定的綜合性.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)若一個數(shù)列各項取倒數(shù)后按原來的順序構(gòu)成等差數(shù)列,則稱這個數(shù)列為調(diào)和數(shù)列.已知數(shù)列{an}是調(diào)和數(shù)列,對于各項都是正數(shù)的數(shù)列{xn},滿足xnan=xn+1an+1=xn+2an+2(n∈N*).
(Ⅰ)證明數(shù)列{xn}是等比數(shù)列;
(Ⅱ)把數(shù)列{xn}中所有項按如圖所示的規(guī)律排成一個三角形數(shù)表,當x3=8,x7=128時,求第m行各數(shù)的和;
(Ⅲ)對于(Ⅱ)中的數(shù)列{xn},證明:
n
2
-
1
3
x1-1
x2-1
+
x2-1
x3-1
+…+
xn-1
xn+1-1
n
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2006•南匯區(qū)二模)已知數(shù)列{an}中,若2an=an-1+an+1(n∈N*,n≥2),則下列各不等式中一定成立的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

若一個數(shù)列各項取倒數(shù)后按原來的順序構(gòu)成等差數(shù)列,則稱這個數(shù)列為調(diào)和數(shù)列.已知數(shù)列{an}是調(diào)和數(shù)列,對于各項都是正數(shù)的數(shù)列{xn},滿足數(shù)學公式(n∈N*).
(Ⅰ)證明數(shù)列{xn}是等比數(shù)列;
(Ⅱ)把數(shù)列{xn}中所有項按如圖所示的規(guī)律排成一個三角形數(shù)表,當x3=8,x7=128時,求第m行各數(shù)的和;
(Ⅲ)對于(Ⅱ)中的數(shù)列{xn},證明:數(shù)學公式

查看答案和解析>>

科目:高中數(shù)學 來源:2010年北京市朝陽區(qū)高考數(shù)學一模試卷(理科)(解析版) 題型:解答題

若一個數(shù)列各項取倒數(shù)后按原來的順序構(gòu)成等差數(shù)列,則稱這個數(shù)列為調(diào)和數(shù)列.已知數(shù)列{an}是調(diào)和數(shù)列,對于各項都是正數(shù)的數(shù)列{xn},滿足(n∈N*).
(Ⅰ)證明數(shù)列{xn}是等比數(shù)列;
(Ⅱ)把數(shù)列{xn}中所有項按如圖所示的規(guī)律排成一個三角形數(shù)表,當x3=8,x7=128時,求第m行各數(shù)的和;
(Ⅲ)對于(Ⅱ)中的數(shù)列{xn},證明:

查看答案和解析>>

科目:高中數(shù)學 來源:2010年北京市朝陽區(qū)高考數(shù)學一模試卷(文科)(解析版) 題型:解答題

若一個數(shù)列各項取倒數(shù)后按原來的順序構(gòu)成等差數(shù)列,則稱這個數(shù)列為調(diào)和數(shù)列.已知數(shù)列{an}是調(diào)和數(shù)列,對于各項都是正數(shù)的數(shù)列{xn},滿足(n∈N*).
(Ⅰ)證明數(shù)列{xn}是等比數(shù)列;
(Ⅱ)把數(shù)列{xn}中所有項按如圖所示的規(guī)律排成一個三角形數(shù)表,當x3=8,x7=128時,求第m行各數(shù)的和;
(Ⅲ)對于(Ⅱ)中的數(shù)列{xn},證明:

查看答案和解析>>

同步練習冊答案