2.命題“若a=0或b=0,則ab=0”的逆否命題是真命題(填真命題或假命題).

分析 判斷原命題的真假,根據(jù)互為逆否的兩個(gè)命題真假性相同,得到答案.

解答 解:命題“若a=0或b=0,則ab=0”是真命題,
故其逆否命題“若ab≠0,則a≠0且b≠0”也是真命題,
故答案為:真命題

點(diǎn)評(píng) 本題以命題的真假判斷與應(yīng)用為載體,考查了四種命題,實(shí)數(shù)的性質(zhì),難度不大,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)$f(x)=\frac{a}{x}-1+lnx$,若存在x0>0,使得f(x0)≤0有解,則實(shí)數(shù)a的取值范圍是(  )
A.(2,+∞)B.(-∞,3)C.(-∞,1]D.[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某公司在甲乙兩地同時(shí)銷售一種品牌車,利潤(rùn)(單位:萬元)分別為L(zhǎng)1=-x2+21x和L2=2x,其中x為銷售量(單位:輛).若該公司在兩地共銷售15輛車,則能獲得的最大利潤(rùn)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若$a<\frac{1}{6}$,則化簡(jiǎn)$\root{4}{{{{(6a-1)}^2}}}$的結(jié)果是(  )
A.$-\sqrt{1-6a}$B.$\sqrt{6a-1}$C.$\sqrt{1-6a}$D.$-\sqrt{6a-1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知集合A={x|1≤x≤7},B={x|1-2m<x<m+2},U=R.若A∩B=B,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.函數(shù)f(x)=$\left\{\begin{array}{l}{-x,x≥0}\\{{x}^{2},x<0}\end{array}\right.$,則f[f(1)]的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.函數(shù)y=log${\;}_{\frac{1}{3}}$(x2-2x-3)的單調(diào)減區(qū)間為(3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.2015年我校組織學(xué)生積極參加科技創(chuàng)新大賽,其中作品A獲得省級(jí)獎(jiǎng),九位評(píng)委為作品A給出的分?jǐn)?shù)如莖葉圖所示,記分員算得的平均分為89,復(fù)核員在復(fù)核時(shí),發(fā)現(xiàn)有一個(gè)數(shù)字(莖葉圖中的x)無法看清.若記分員的計(jì)算無誤,則數(shù)字x應(yīng)該是( 。
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=2x2-kx-4在區(qū)間[-2,4]上具有單調(diào)性,則k的取值范圍是( 。
A.[-8,16]B.(-∞,-8]∪[16,+∞)C.(-∞,-8)∪(16,+∞)D.[16,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案