函數(shù)數(shù)學(xué)公式的單調(diào)遞增區(qū)間是


  1. A.
    (-∞,2)
  2. B.
    (0,2)
  3. C.
    (2,4)
  4. D.
    (2,+∞)
C
分析:先求出函數(shù)的定義域,再根據(jù)復(fù)合函數(shù)的單調(diào)性在定義域內(nèi)求出-x2+4x的減區(qū)間,即所求增區(qū)間.
解答:由-x2+4x≥0即x2-4x≤0,得函數(shù)的定義域[0,4].
又-x2+4x的增區(qū)間為(0,2),減區(qū)間為(2,4).
所以函數(shù)的單調(diào)遞增區(qū)間是(2,4).
故選C.
點(diǎn)評(píng):本題考查了函數(shù)的單調(diào)性及單調(diào)區(qū)間的求解,對(duì)于復(fù)合函數(shù)的單調(diào)性要根據(jù)“同增異減”來(lái)判斷,特別要注意單調(diào)區(qū)間為定義域的子集.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

動(dòng)點(diǎn)A(x,y)在圓x2+y2=1上繞坐標(biāo)原點(diǎn)沿逆時(shí)針?lè)较騽蛩傩D(zhuǎn),12秒旋轉(zhuǎn)一周.已知時(shí)間t=0時(shí),點(diǎn)A的坐標(biāo)是(
1
2
,
3
2
)
,則當(dāng)0≤t≤12時(shí),動(dòng)點(diǎn)A的縱坐標(biāo)y關(guān)于t(單位:秒)的函數(shù)的單調(diào)遞增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

動(dòng)點(diǎn)A(x,y)在圓x2+y2=1上繞坐標(biāo)原點(diǎn)沿逆時(shí)針?lè)较騽蛩傩D(zhuǎn),12秒旋轉(zhuǎn)一周.已知時(shí)間t=0時(shí),點(diǎn)A的坐標(biāo)是(
3
2
,
1
2
),則當(dāng)0≤t≤12時(shí),動(dòng)點(diǎn)A的縱坐標(biāo)y關(guān)于 t(單位:秒)的函數(shù)的單調(diào)遞增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=-x2+2lnx+8,則函數(shù)的單調(diào)遞增區(qū)間是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log2|sinx|,則該函數(shù)的單調(diào)遞增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)的圖象如圖所示,則該函數(shù)的單調(diào)遞增區(qū)間是(  )
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊(cè)答案