精英家教網 > 高中數學 > 題目詳情

【題目】在平面直角坐標系xOy中,已知橢圓C的離心率為,且過點過橢圓的左頂點A作直線,M為直線上的動點B為橢圓右頂點,直線BM交橢圓CP

(1)求橢圓C的方程;

(2)求證:;

(3)試問是否為定值若是定值,請求出該定值;若不是定值,請說明理由.

【答案】12)詳見解析(34

【解析】

試題(1)兩個獨立條件可解得兩個未知數:由離心率為,由橢圓C過點,即得,,則橢圓C的方程.(2)證明,一般從坐標表示出發(fā):先設,則,又由B,P,M三點關系可得,從而,也可設直線斜率表示點的坐標(3)同(2

試題解析:(1橢圓C 的離心率為,

,則,又橢圓C過點,2

,,

則橢圓C的方程4

2)設直線BM的斜率為k,則直線BM的方程為,設,

代入橢圓C的方程中并化簡得:

, 6

解之得,,

,從而. 8分

,得,9

, 11

13

3=

為定值416

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】對某校高一年級學生參加社區(qū)服務次數進行統(tǒng)計,隨機抽取M名學生作為樣本,得到這M名學生參加社區(qū)服務的次數.根據此數據作出了頻數與頻率的統(tǒng)計表和頻率分布直方圖如下:

分組

頻數

頻率

[10,15)

10

0.25

[15,20)

25

n

[20,25)

m

p

[25,30)

2

0.05

合計

M

1

(1)求出表中M,p及圖中a的值;

(2)若該校高一學生有360人,試估計該校高一學生參加社區(qū)服務的次數在區(qū)間[15,20)內的人數;

(3)在所取樣本中,從參加社區(qū)服務的次數不少于20次的學生中任選2人,請列舉出所有基本事件,并求至多1人參加社區(qū)服務次數在區(qū)間[20,25)內的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,四棱錐中,底面,,,,的中點.

(1)求證:平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=e2x﹣ax2+bx﹣1,其中a,b∈R,e為自然對數的底數,若f(1)=0,f′(x)是f(x)的導函數,函數f′(x)在區(qū)間(0,1)內有兩個零點,則a的取值范圍是(
A.(e2﹣3,e2+1)
B.(e2﹣3,+∞)
C.(﹣∞,2e2+2)
D.(2e2﹣6,2e2+2)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知等差數列{an}的前n項和為Sn , 若Sm1=﹣4,Sm=0,Sm+2=14(m≥2,且m∈N*).
(1)求m的值;
(2)若數列{bn}滿足 =logabn(n∈N*),求數列{(an+6)bn}的前n項和.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=mln(x+1),g(x)= (x>﹣1).
(Ⅰ)討論函數F(x)=f(x)﹣g(x)在(﹣1,+∞)上的單調性;
(Ⅱ)若y=f(x)與y=g(x)的圖象有且僅有一條公切線,試求實數m的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】△ABC的三個內角A、B、C所對的邊分別為a、b、c,已知a≠b,c= ,且bsinB﹣asinA= acosA﹣ bcosB.
(Ⅰ)求C;
(Ⅱ)若△ABC的面積為 ,求a與b的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】把函數 的圖象上每個點的橫坐標擴大到原來的4倍,再向左平移 ,得到函數g(x)的圖象,則函數g(x)的一個單調遞減區(qū)間為(
A.
B. ??
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知正六邊形ABCDEF的邊長為2,沿對角線AE將△FAE的頂點F翻折到點P處,使得
(1)求證:平面PAE⊥平面ABCDE;
(2)求二面角B﹣PC﹣D的平面角的余弦值.

查看答案和解析>>

同步練習冊答案