6.已知函數(shù)f(x)=$\frac{1}{2-si{n}^{2}x}$+$\frac{1}{3-2co{s}^{2}x}$,求f(x)的最小值.

分析 化余弦為正弦,然后換元,再配方,最后利用“對勾函數(shù)”的單調(diào)性求得最值.

解答 解:f(x)=$\frac{1}{2-si{n}^{2}x}$+$\frac{1}{3-2co{s}^{2}x}$=$\frac{1}{2-si{n}^{2}x}+\frac{1}{1+2si{n}^{2}x}$
=$\frac{1+2si{n}^{2}x+2-si{n}^{2}x}{(2-si{n}^{2}x)(1+2si{n}^{2}x)}=\frac{3+si{n}^{2}x}{(2-si{n}^{2}x)(1+2si{n}^{2}x)}$.
令t=sin2x(0≤t≤1),
則原函數(shù)化為g(t)=$\frac{3+t}{(2-t)(1+2t)}=\frac{t+3}{-2{t}^{2}+3t+2}$
=$\frac{t+3}{-2(t+3)^{2}+15(t+3)-25}$=$\frac{1}{-[(t+3)+\frac{25}{t+3}]+15}$.
∵3≤t+3≤4,∴$-[(t+3)+\frac{25}{t+3}]+15$∈[$\frac{11}{3},\frac{19}{4}$].
∴$g(t)_{min}=\frac{4}{19}$.
即f(x)的最小值為$\frac{19}{4}$.

點評 本題考查函數(shù)的最值,考查了換元法、配方法以及“對勾函數(shù)”在求最值中的應(yīng)用,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.計算下列各不定積分:
(1)∫$\frac{1}{{x}^{2}\sqrt{x}}$dx;
(2)∫xe${\;}^{\frac{{x}^{2}}{2}}$dx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.己知直線L經(jīng)過點A(-2,1),B(1,3),求
(1)直線L的斜率;
(2)直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.證明:cos$\frac{2π}{7}$+cos$\frac{4π}{7}$+cos$\frac{6π}{7}$=-2sin$\frac{π}{12}$cos$\frac{π}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)$\overrightarrow{a}$=(3,-1,-2),$\overrightarrow$=(1,2,-1).求:
(1)$\overrightarrow{a}$•$\overrightarrow$;
(2)$\overrightarrow{a}$與$\overrightarrow$的夾角的余弦;
(3)$\overrightarrow{a}$×$\overrightarrow$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若90°<β<α<135°,則α-β的范圍是(0°,45°),α+β的范圍是(180°,270°).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.寫出與$\frac{π}{3}$終邊相同的角的集合S,并把S中適合不等式-2π≤β<4π的元素β寫出來.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖,F(xiàn)1,F(xiàn)2是橢圓C;$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點,點P在橢圓C上,線段PF2與圓x2+y2=b2相切于點Q,且點Q為線段PF2的中點,則$\frac{{a}^{2}+{e}^{2}}{3b}$(e為橢圓的離心率)的最小值為(  )
A.$\frac{\sqrt{5}}{3}$B.$\frac{\sqrt{5}}{4}$C.$\frac{\sqrt{6}}{3}$D.$\frac{\sqrt{6}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.復(fù)數(shù)z=(m2-m-6)+(m2+m-2)i,m∈R,試求m取何值時.
(1)z是實數(shù);
(2)z是純虛數(shù).

查看答案和解析>>

同步練習(xí)冊答案