【題目】已知函數(shù), ,其中…是然對(duì)數(shù)底數(shù).
(1)若函數(shù)有兩個(gè)不同的極值點(diǎn), ,求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),求使不等式在一切實(shí)數(shù)上恒成立的最大正整數(shù).
【答案】(1);(2)14
【解析】試題分析:(1)函數(shù)有兩個(gè)不同的極值點(diǎn), 得, 有兩個(gè)不同的根,對(duì)分類(lèi)討論:當(dāng)時(shí),可得在上遞減,不合題意, ,函數(shù)在上遞減,在上遞增,只需,解出即可得出結(jié)果;(2)當(dāng)時(shí),由題意可得:不等式對(duì)題意恒成立,令,令得,利用單調(diào)性可得,整理得,再研究其單調(diào)性即可得出.
試題解析:(1)f′(x)=λex﹣2x,據(jù)題意得f′(x)=λex﹣2x=0有兩個(gè)不同的根x1,x2,當(dāng)λ≤0時(shí),f′(x)=λex﹣2x≤0,因此f(x)在R上遞減,不合題意,∴λ>0,又f″(x)=λex﹣2,令f″(x)=0,解得,∴函數(shù)f′(x)=λex﹣2x在上遞減,在上遞增,∴f′(x)=λex﹣2x=0有兩個(gè)不同的根,則,即,,解得.
(2)當(dāng)λ=1時(shí),求使不等式f(x)>g(x)在一切實(shí)數(shù)上恒成立,即不等式對(duì)任意x恒成立,令,∴,令h′(x)=0得,∴函數(shù)h(x)在上遞減,在上遞增,∴,整理得.令,易得(μ)在(2,+∞)上遞減,若μ=2e2∈(14,15),(2e2)=15﹣2e2>0,若μ=15,,所以滿(mǎn)足條件的最大整數(shù)μ=14.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)(單位:千元)對(duì)年銷(xiāo)售量(單位: )和年利潤(rùn)(單位:千元)的影響.對(duì)近8年的年宣傳費(fèi)和年銷(xiāo)售量數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.
表中.
(1)根據(jù)散點(diǎn)圖判斷與哪一個(gè)適宜作為年銷(xiāo)售量關(guān)于年宣傳費(fèi)的回歸類(lèi)型?(給出判斷即可,不必說(shuō)明理由)
(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于的回歸方程;
(3)已知這種產(chǎn)品的利潤(rùn)與的的關(guān)系為.根據(jù)(2)的結(jié)果回答下列問(wèn)題:
(ⅰ)年宣傳費(fèi)時(shí),年銷(xiāo)售量及年利潤(rùn)的預(yù)報(bào)值是多少?
(ⅱ)年宣傳費(fèi)為何值時(shí),年利潤(rùn)的預(yù)報(bào)值最大?
附:對(duì)于一組數(shù)據(jù),其回歸直線(xiàn)的的斜率和截距的最小二乘估計(jì)為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=4cosωxsin(ωx+ )+a(ω>0)圖象上最高點(diǎn)的縱坐標(biāo)為2,且圖象上相鄰兩個(gè)最高點(diǎn)的距離為π. (Ⅰ)求a和ω的值;
(Ⅱ)求函數(shù)f(x)在[0,π]上的單調(diào)遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|< )的圖象如圖所示,為了得到g(x)=sinωx的圖象,則只要將f(x)的圖象( )
A.向左平移 個(gè)單位長(zhǎng)度
B.向右平移 個(gè)單位長(zhǎng)度
C.向右平移 個(gè)單位長(zhǎng)度
D.向左平移 個(gè)單位長(zhǎng)度
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), .
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若關(guān)于的方程有實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}是首項(xiàng)為正數(shù)的等差數(shù)列,a1a2=3,a2a3=15.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=(an+1)2 ,求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司研發(fā)出一款產(chǎn)品,批量生產(chǎn)前先在某城市銷(xiāo)售30天進(jìn)行市場(chǎng)調(diào)查.調(diào)查結(jié)果發(fā)現(xiàn):日銷(xiāo)量與天數(shù)的對(duì)應(yīng)關(guān)系服從圖①所示的函數(shù)關(guān)系:每件產(chǎn)品的銷(xiāo)售利潤(rùn)與天數(shù)的對(duì)應(yīng)關(guān)系服從圖②所示的函數(shù)關(guān)系.圖①由拋物線(xiàn)的一部分(為拋物線(xiàn)頂點(diǎn))和線(xiàn)段組成.
(Ⅰ)設(shè)該產(chǎn)品的日銷(xiāo)售利潤(rùn) ,分別求出, , 的解析式,
(Ⅱ)若在30天的銷(xiāo)售中,日銷(xiāo)售利潤(rùn)至少有一天超過(guò)8500元,則可以投入批量生產(chǎn),該產(chǎn)品是否可以投入批量生產(chǎn),請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖某綜藝節(jié)目現(xiàn)場(chǎng)設(shè)有A,B,C,D四個(gè)觀(guān)眾席,現(xiàn)有由5不同顏色的馬甲可供現(xiàn)場(chǎng)觀(guān)眾選擇,同一觀(guān)眾席上的馬甲的顏色相同,相鄰觀(guān)眾席上的馬甲的顏色不相同,則不同的安排方法種數(shù)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)= x3﹣x2+ax+m,其中a>0,如果存在實(shí)數(shù)t,使f′(t)<0,則f′(t+2)f′( )的值( )
A.必為正數(shù)
B.必為負(fù)數(shù)
C.必為非負(fù)
D.必為非正
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com