A. | y=$\frac{1}{x-1}$ | B. | y=1-x2 | C. | y=x2+x | D. | y=$\frac{1}{x+1}$ |
分析 利用導數(shù)法,分別判斷給定函數(shù)在(-∞,0)上的單調(diào)性,可得答案.
解答 解:∵y=$\frac{1}{x-1}$,
∴y′=-$\frac{1}{(x-1)^{2}}$<0在(-∞,0)上恒成立,
故y=$\frac{1}{x-1}$在(-∞,0)上是減函數(shù);
∵y=1-x2,
∴y′=-2x>0在(-∞,0)上恒成立,
故y=1-x2在(-∞,0)上是增函數(shù);
∵y=x2+x,
∴y′=2x+1<0在(-∞,0)上不恒成立,
故y=x2+x在(-∞,0)上不是減函數(shù);
∵y=y=$\frac{1}{x+1}$,
∴y′=-$\frac{1}{{(x+1)}^{2}}$<0在(-∞,0)上不恒成立,
故y=$\frac{1}{x-1}$在(-∞,0)上不是減函數(shù);
故選:A.
點評 本題考查的知識點是利用導數(shù)法,判斷函數(shù)的單調(diào)性,難度中檔.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 三角函數(shù)都是周期函數(shù),sinx是三角函數(shù),所以sinx是周期函數(shù) | |
B. | 一切奇數(shù)都不能被2整除,525是奇數(shù),所以525不能被2整除 | |
C. | 由1=12,1+3=22,1+3+5=32,得1+3+…+(2n-1)=n2(n∈N*) | |
D. | 兩直線平行,同位角相等.若∠A與∠B是兩條平行直線的同位角,則∠A=∠B |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0個 | B. | 1個 | C. | 2 個 | D. | 3個Q |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 63 | B. | -63 | C. | -21 | D. | 63或-21 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com