(本小題滿分10分)選修4-1:幾何證明選講
如圖,直線AB過圓心O,交圓O于A、B,直線AF交圓O于F(不與B重合),直線與圓O相切于C,交AB于E,且與AF垂直,垂足為G,連接AC.

求證:(Ⅰ)
(Ⅱ)

證明:(Ⅰ)連結(jié),是直徑,

 ,
切圓,

(Ⅱ)連結(jié)切圓,
. 

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分) 已知圓的圓心軸上,半徑為1,直線,被圓所截的弦長為,且圓心在直線的下方.
(I)求圓的方程;
(II)設(shè),若圓的內(nèi)切圓,求△的面積
的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)光線l過點P(1,-1),經(jīng)y軸反射后與圓C:(x-4)2+(y-4)2=1
相切,求光線l所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)O為坐標(biāo)原點,曲線x2+y2+2x-6y+1=0上有兩點P、Q,滿足關(guān)于直線x+my+4=0對稱,又滿足·=0.
(1)求m的值;
(2)求直線PQ的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知過點P(-2,-2)作圓x2+y2+Dx-2y-5=0的兩切線關(guān)于直線x-y=0對稱,
設(shè)切點分別有A、B,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知雙曲線 的一條漸近線方程是 ,它的一個焦點在拋物線 的準(zhǔn)線上,則雙曲線線的方程為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

雙曲線的虛軸長等于(     )

A. B.-2t C. D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

拋物線的焦點是(    )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

、已知圓O:x2+y2=13

(1)證明:點A(-1,5)在圓O外。
(2)如圖所示,經(jīng)過圓O上任P一點作y軸的垂線,垂足為Q,求線段PQ的中點M的軌跡方程。(12分)

查看答案和解析>>

同步練習(xí)冊答案