A. | 0<f(3)-f(2)<f′(2)<f′(3) | B. | 0<f′(2)<f′(3)<f(3)-f(2) | C. | 0<f′(3)<f(3)-f(2)<f′(2) | D. | 0<f′(3)<f′(2)<f(3)-f(2) |
分析 觀察圖象及導(dǎo)數(shù)的幾何意義得,即函數(shù)在(2,3)上增長(zhǎng)得越來越慢,所以導(dǎo)數(shù)值為正,且絕對(duì)值越來越小,故f′(2)>f′(3),同時(shí)根據(jù)割線的性質(zhì),一定可以在(2,3)之間找到一點(diǎn)其切線的斜率等于割線斜率,即其導(dǎo)數(shù)值等于割線的斜率,由此可得結(jié)論.
解答 解:觀察圖象可知,該函數(shù)在(2,3)上為連續(xù)可導(dǎo)的增函數(shù),且增長(zhǎng)的越來越慢.
所以各點(diǎn)處的導(dǎo)數(shù)在(2,3)上處處為正,且導(dǎo)數(shù)的值逐漸減小,所以故f′(2)>f′(3),
而f(3)-f(2)=$\frac{f(3)-f(2)}{3-2}$,表示的連接點(diǎn)(2,f(2))與點(diǎn)(3,f(3))割線的斜率,根據(jù)導(dǎo)數(shù)的幾何意義,一定可以在(2,3)之間找到一點(diǎn),該點(diǎn)處的切線與割線平行,則割線的斜率就是該點(diǎn)處的切線的斜率,即該點(diǎn)處的導(dǎo)數(shù),則必有:$0<f′(3)<\frac{f(3)-f(2)}{3-2}<f′(2)$.
故選:C.
點(diǎn)評(píng) 本題考查了函數(shù)的導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系,以及割線與切線間的關(guān)系,要注意數(shù)形結(jié)合來解題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {-1,0,1} | B. | {0,1} | C. | (-1,+∞) | D. | [-1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | M=P | B. | P?M | C. | M?P | D. | ∁U(M∪P)=∅ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第四象限 | B. | 第三象限 | C. | 第二象限 | D. | 第一象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 12 | B. | -12 | C. | 8 | D. | -8 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com