如圖,⊙O的直徑AB,BE為圓0的切線,點(diǎn)C為⊙O 上不同于A、B的一點(diǎn),AD為∠BAC的平分線,且分別與BC 交于H,與⊙O交于D,與BE交于E,連結(jié)BD、CD.
(1)求證:∠DBE=∠DBC
(2)若HE=2a,求ED.
考點(diǎn):與圓有關(guān)的比例線段
專題:直線與圓
分析:(1)由已知得∠BAD=∠CAD=∠DBC,∠DBE=∠BAE,由此能證明∠DBE=∠DBC.
(2)由⊙O的直徑AB,∠ADB=90°,由此能求出ED.
解答: (1)證明:∵⊙O的直徑AB,BE為圓0的切線,點(diǎn)C為⊙O 上不同于A、B的一點(diǎn),AD為∠BAC的平分線,
且分別與BC 交于H,與⊙O交于D,與BE交于E,連結(jié)BD、CD,
∴∠BAD=∠CAD=∠DBC,∠DBE=∠BAE,
∴∠DBE=∠DBC.
(2)解:∵⊙O的直徑AB
∴∠ADB=90°,
又由(1)得∠DBE=∠DBH,
∵HE=2a,
∴ED=a.
點(diǎn)評(píng):本題考查兩角相等的求法,考查線段長(zhǎng)的求法,解題時(shí)要認(rèn)真審題,注意圓的性質(zhì)的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義在非零實(shí)數(shù)集上的函數(shù)f(xy)=f(x)+f(y),則函數(shù)f(x)的奇偶性是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(ωx+θ),函數(shù)f(x)的圖象關(guān)于點(diǎn)(
π
2
,0)對(duì)稱,并在x=π處取得最小值,則正實(shí)數(shù)ω的值構(gòu)成的集合為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC的三個(gè)內(nèi)角A、B、C所對(duì)邊的長(zhǎng)分別為a、b、c,設(shè)向量
p
=(a+b,c),
q
=(a-c,a-b),若
p
q
,
(1)求角B的大。
(2)求sinA•sinC的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x),(x≠0)對(duì)于任意的x,y∈R且x,y≠0滿足f(xy)=f(x)+f(y).
(Ⅰ)求f(1),f(-1)的值;
(Ⅱ)判斷函數(shù)y=f(x),(x≠0)的奇偶性;
(Ⅲ)若函數(shù)y=f(x)在(0,+∞)上是增函數(shù),解不等式f(
1
6
x)+f(x-5)≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=cosx+2sinx在區(qū)間[0,
π
2
]上的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列判斷正確的是( 。
A、函數(shù)f(x)=
x2-2x
x-2
是奇函數(shù)
B、函數(shù)f(x)=(1-x)
1+x
1-x
是偶函數(shù)
C、函數(shù)f(x)=
16-x2
|x+6|+|x-4|
是偶函數(shù)
D、函數(shù)f(x)=1既是奇函數(shù)又是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若一個(gè)球的體積為36π,則該球的半徑為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,△ABC中,AB=AC=2,BC=2
3
,點(diǎn)D在BC邊上,∠ADC=45°,
(1)求∠ACD;   
(2)求AD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案