△ABC的三個(gè)內(nèi)角A、B、C所對(duì)邊的長(zhǎng)分別為a、b、c,設(shè)向量
p
=(a+b,c),
q
=(a-c,a-b),若
p
q
,
(1)求角B的大;
(2)求sinA•sinC的最大值.
考點(diǎn):余弦定理,平行向量與共線向量
專題:解三角形
分析:(1)由兩向量的坐標(biāo),以及兩向量平行的條件列出關(guān)系式,再利用余弦定理表示出cosB,把得出關(guān)系式代入求出cosB的值,即可確定出B的度數(shù);
(2)由sinC=sin(A+B),把B代入并利用兩角和與差的正弦函數(shù)公式化簡(jiǎn),代入sinAsinC中,整理后利用正弦函數(shù)的值域即可確定出最大值.
解答: 解:(1)∵
p
=(a+b,c),
q
=(a-c,a-b),
p
q
,
∴(a+b)(a-c)-c(a-b)=0,
整理得:a2-b2+c2-ac=0,即a2+c2-b2=ac,
∴cosB=
a2+c2-b2
2ac
=
1
2
,
∵B∈(0,π),
∴B=
π
3
;
(2)∵sinC=sin(A+B)=sin(A+
π
3
)=
1
2
sinA+
3
2
cosA,
∴sinAsinC=sinA(
1
2
sinA+
3
2
cosA)=
1
2
(sin2A+
3
sinAcosA)=
1
2
1-cos2A
2
+
3
2
sin2A)=
1
2
sin(2A-
π
6
)+
1
4
,
∵0<2A<
3
,
∴-
π
6
<2A-
π
6
6
,
則當(dāng)A=
π
3
時(shí),sinAsinC有最大值為
3
4
點(diǎn)評(píng):此題考查了余弦定理,平面向量的數(shù)量積運(yùn)算,以及正弦函數(shù)的值域,熟練掌握余弦定理是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2+bx+c,且f(1)=f(3)=0,則f(x)的單調(diào)遞減區(qū)間為( 。
A、(-∞,1)或(3
,+∞)
B、(1,3)
C、(-∞,2)
D、(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某幾何體的三視圖如圖所示,圖中的三個(gè)視圖均為邊長(zhǎng)為2的正方形,則該幾何體的體積為( 。
A、
20
3
B、
4
3
C、4
D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
ax(x<0)
(a-3)x+4a(x≥0)
滿足[f(x1)-f(x2)](x1-x2)<0對(duì)定義域中的任意兩個(gè)不相等的x1,x2都成立,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-
1
4
x2+xsinx+cosx,x∈[-π,π].
(1)判斷函數(shù)y=f(x)奇偶性,并求其單調(diào)區(qū)間;
(2)若曲線y=f(x)與直線y=b有兩個(gè)交點(diǎn),求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)x,y滿足約束條件
x≥0
y≤x
2x+y≤0
則z=x+3y的最大值等于( 。
A、9B、0C、27D、36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,⊙O的直徑AB,BE為圓0的切線,點(diǎn)C為⊙O 上不同于A、B的一點(diǎn),AD為∠BAC的平分線,且分別與BC 交于H,與⊙O交于D,與BE交于E,連結(jié)BD、CD.
(1)求證:∠DBE=∠DBC
(2)若HE=2a,求ED.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)為偶函數(shù),且其圖象上相鄰的一個(gè)最高點(diǎn)和最低點(diǎn)之間的距離為
4+π2

(1)求f(x)的解析式;
(2)若tanα+
1
tanα
=5,求
2
f(2α-
π
4
)-1
1-tanα
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

己知函數(shù)f(x)=
x2
1+x2
,那么f(1)+f(2)+f(3)+…+f(2011)+f(
1
2
)+f(
1
3
)+…+f(
1
2011
)=( 。
A、2009
1
2
B、2010
1
2
C、2011
1
2
D、2012
1
2

查看答案和解析>>

同步練習(xí)冊(cè)答案