某種產(chǎn)品的廣告支出費(fèi)x與銷售額y(單位:百萬元)之間有如下對應(yīng)數(shù)據(jù):
x 2 4 5 6 8
y 30 40 60 50 70
根據(jù)上表可得同歸方程
y
=bx+a中的b為6.5,據(jù)此模型預(yù)報(bào)廣告費(fèi)用為10百萬元時(shí)銷售額為( 。
A、65.5百萬元
B、72.0百萬元
C、82.5百萬元
D、83.0百萬元
考點(diǎn):線性回歸方程
專題:概率與統(tǒng)計(jì)
分析:首先求出x,y的平均數(shù),利用最小二乘法做出線性回歸方程的系數(shù),根據(jù)樣本中心點(diǎn)滿足線性回歸方程,代入已知數(shù)據(jù)求出a的值,寫出線性回歸方程.當(dāng)自變量取10時(shí),把10代入線性回歸方程,求出銷售額的預(yù)報(bào)值,這是一個(gè)估計(jì)數(shù)字,它與真實(shí)值之間有誤差.
解答:解:
.
x
=
2+4+5+6+8
5
=5,
.
y
=
30+40+60+50+70
5
=50
∴a=
.
y
-b•
.
x
=50-6.5×5=17.5,
當(dāng)x=10時(shí),y=6.5×10+17.5=82.5(百萬元).
故選:C.
點(diǎn)評:本題考查回歸分析的初步應(yīng)用,考查求線性回歸方程,考查預(yù)報(bào)y的值,是一個(gè)綜合題目,這種題目完全符合新課標(biāo)的大綱要求,是一個(gè)典型的題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知如圖所示的程序框圖,若輸入的x值為1,則輸出的y值是( 。
A、1B、3C、2D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四面體A-BCD中,AB⊥平面BCD,BC⊥CD,若AB=BC=CD=1,則AD=(  )
A、1
B、
2
C、
3
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=
1 
1 
為矩陣A=
1a
-14
屬于特征值λ的一個(gè)特征向量.
(Ⅰ)求實(shí)數(shù)a,λ的值;
(Ⅱ)求矩陣A的逆矩陣.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,棱長為1的正方體ABCD-A1B1C1D1中,P為線段A1B上的動點(diǎn),則下列結(jié)論錯(cuò)誤的是(  )
A、DC1⊥D1P
B、平面D1A1P⊥平面A1AP
C、∠APD1的最大值為90°
D、AP+PD1的最小值為
2+
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(3,-1),
b
=(-1,2),
c
=(2,1).若
a
=x
b
+y
c
(x,y∈R),則x+y=(  )
A、2
B、1
C、0
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

x2
m
-
y2
n
=1(其中m,n∈{-2,-5,4})所表示的圓錐曲線(橢圓、雙曲線、拋物線)方程中任取一個(gè),則此方程是焦點(diǎn)在y軸上的雙曲線方程的概率為( 。
A、
1
2
B、
4
7
C、
2
3
D、
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x>-1,則函數(shù)y=x+
1
x+1
的最小值為( 。
A、-1B、0C、1D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆四川省成都市新都區(qū)高三診斷測試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題

定義一:對于一個(gè)函數(shù)f(x)(x∈D),若存在兩條距離為d的直線y=kx+m1和y=kx+m2,使得在x∈D時(shí),kx+m1≤f(x)≤kx+m2 恒成立,則稱函數(shù)f(x)在D內(nèi)有一個(gè)寬度為d的.

定義二:若一個(gè)函數(shù)f(x),對于任意給定的正數(shù)?,都存在一個(gè)實(shí)數(shù)x0,使得函數(shù)f(x)在[x0,+∞)內(nèi)有一個(gè)寬度為?的,則稱f(x)在正無窮處有.下列函數(shù):

①f(x)=lgx,②f(x)=,③f(x)=-,④f(x)=,⑤f(x)=2x,⑥f(x)=3x-

其中在正無窮處有的函數(shù)的序號是___________.

 

查看答案和解析>>

同步練習(xí)冊答案