已知函數(shù)f(x)=2sinx+cos2x.
(1)求f(
π
4
)
的值.
(2)求函數(shù)f(x)的最大值及取得最大值時(shí)x的值.
考點(diǎn):三角函數(shù)的最值
專題:三角函數(shù)的求值
分析:(1)根據(jù)f(x)的解析式,求得f(
π
4
)的值.
(2)根據(jù)f(x)=sin2x+cos2x=
2
sin(2x+
π
4
),可得函數(shù)的最大值,此時(shí),由2x+
π
4
=2kπ+
π
2
,k∈z,求得 x的值.
解答: 解:(1)∵f(x)=sin2x+cos2x,∴f(
π
4
)=sin
π
2
+cos
π
2
=1
(2)f(x)=sin2x+cos2x=
2
sin(2x+
π
4
),所以函數(shù)的最大值為
2

此時(shí),2x+
π
4
=2kπ+
π
2
,k∈z,x=kπ+
π
4
,k∈z.
點(diǎn)評(píng):本題主要考查輔助角公式,正弦函數(shù)的值域,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法正確的是(  )
A、“p∨q為真”是“p∧q為真”的充分不必要條件
B、設(shè)有一個(gè)回歸直線方程為
?
y
=2-1.5x
,則變量x每增加一個(gè)單位,
?
y
平均減少1.5個(gè)單位
C、若a,b∈[0,1],則不等式a2+b2
1
4
成立的概率是
π
4
D、已知空間直線a,b,c,若a⊥b,b⊥c,則a∥c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知偶函數(shù)f(x)=Asin(2x+φ)+b(A>0,0<φ<π)的最大值是3,最小值為-1
(1)求A、b、φ的值;
(2)求函數(shù)y=f(x+
π
4
)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,景點(diǎn)A在景點(diǎn)B的正北方向2千米處,景點(diǎn)C在景點(diǎn)B的正東方向2
3
千米處.
(Ⅰ)游客甲沿CA從景點(diǎn)C出發(fā)行至與景點(diǎn)B相距
7
千米的點(diǎn)P處,記∠PBC=α,求sinα的值;
(Ⅱ)甲沿CA從景點(diǎn)C出發(fā)前往景點(diǎn)A,乙沿AB從景點(diǎn)A出發(fā)前往景點(diǎn)B,甲乙同時(shí)出發(fā),甲的速度為1千米/小時(shí),乙的速度為2千米/小時(shí).若甲乙兩人之間通過(guò)對(duì)講機(jī)聯(lián)系,對(duì)講機(jī)在該景區(qū)內(nèi)的最大通話距離為3千米,問(wèn)有多長(zhǎng)時(shí)間兩人不能通話?(精確到0.1小時(shí),參考數(shù)據(jù):
5
≈2.2,
15
≈3.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3
sin2x-2sin2x
(1)求函數(shù)f(x)的最小正周期;        
(2)解方程f(x)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給定整數(shù)n(n≥3),記f(x)為集合{1,2,…2n-1}的滿足如下兩個(gè)條件的子集A的元素個(gè)數(shù)的最小值:
a)1∈A,2n-1∈A;
b)A中的元素(除1外)均為A中的另兩個(gè)(可以相同)元素的和.
(1)求f(3)的值;
(2)求證:f(100)≤108.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知鈍角三角形的三邊長(zhǎng)是三個(gè)連續(xù)偶數(shù),求此三角形的三邊長(zhǎng)和面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sin(-
π
2
-α)•cos(-
2
-α)=
60
169
,且
π
4
<α<
π
2
,求sinα與cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將函數(shù)y=sinx的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),再把所得各點(diǎn)向右平行移動(dòng)
π
3
個(gè)單位長(zhǎng)度,所得圖象的函數(shù)解析式為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案