設的導數為,若函數的圖像關于直對稱,且. (1)求實數的值 ;(2)求函數的極值.
科目:高中數學 來源: 題型:解答題
已知函數,,.
(1)若在存在極值,求的取值范圍;
(2)若,問是否存在與曲線和都相切的直線?若存在,判斷有幾條?并求出公切線方程,若不存在,說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
函數;
(1)若在處取極值,求的值;
(2)設直線和將平面分成Ⅰ,Ⅱ,Ⅲ,Ⅳ四個區(qū)域(不包括邊界),若圖象恰好位于其中一個區(qū)域,試判斷其所在區(qū)域并求出相應的的范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數,其中為自然對數的底數.
(Ⅰ)當時,求曲線在處的切線與坐標軸圍成的三角形的面積;
(Ⅱ)若函數存在一個極大值和一個極小值,且極大值與極小值的積為,求的
值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某分公司經銷某種品牌產品,每件產品的成本為3元,并且每件產品需向總公司交3元的管理費,預計當每件產品的售價為元(∈[7,11])時,一年的銷售量為萬件.
(1)求分公司一年的利潤(萬元)與每件產品的售價的函數關系式;
(2)當每件產品的售價為多少元時,分公司一年的利潤最大,并求出的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數 (R).
(1) 若,求函數的極值;
(2)是否存在實數使得函數在區(qū)間上有兩個零點,若存在,求出的取值范圍;若不存在,說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
若存在實常數和,使得函數和對其定義域上的任意實數分別滿足:和,則稱直線為和的“隔離直線”.已知,為自然對數的底數).
(1)求的極值;
(2)函數和是否存在隔離直線?若存在,求出此隔離直線方程;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com