已知函數(shù),其中為自然對數(shù)的底數(shù).
(Ⅰ)當(dāng)時(shí),求曲線在處的切線與坐標(biāo)軸圍成的三角形的面積;
(Ⅱ)若函數(shù)存在一個(gè)極大值和一個(gè)極小值,且極大值與極小值的積為,求的
值.
(Ⅰ)所求面積為. (Ⅱ).
解析試題分析:(Ⅰ), 當(dāng)時(shí),,
,,所以曲線在處的切線方程為切線與軸、軸的交點(diǎn)坐標(biāo)分別為,, 所以,所求面積為.
(Ⅱ)因?yàn)楹瘮?shù)存在一個(gè)極大值點(diǎn)和一個(gè)極小值點(diǎn),
所以,方程在內(nèi)存在兩個(gè)不等實(shí)根,
. ,則
設(shè)為函數(shù)的極大值和極小值,
則,,
因?yàn)椋?img src="http://thumb.1010pic.com/pic5/tikupic/01/1/14rft4.png" style="vertical-align:middle;" />,所以,,
即,,,
解得,,此時(shí)有兩個(gè)極值點(diǎn),所以.
考點(diǎn):本題主要考查導(dǎo)數(shù)的幾何意義,直線方程,應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性及極值。
點(diǎn)評:典型題,本題屬于導(dǎo)數(shù)應(yīng)用中的基本問題,(2)涉及方程實(shí)根的討論及研究,運(yùn)用了韋達(dá)定理,輕聲道切線斜率,等于函數(shù)在切點(diǎn)的導(dǎo)函數(shù)值。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù)和“偽二次函數(shù)” .
(Ⅰ)證明:只要,無論取何值,函數(shù)在定義域內(nèi)不可能總為增函數(shù);
(Ⅱ)在同一函數(shù)圖像上任意取不同兩點(diǎn)A(),B(),線段AB中點(diǎn)為C(),記直線AB的斜率為k.
(1)對于二次函數(shù),求證;
(2)對于“偽二次函數(shù)” ,是否有(1)同樣的性質(zhì)?證明你的結(jié)論。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)定函數(shù) (>0),且方程的兩個(gè)根分別為1,4。
(Ⅰ)當(dāng)=3且曲線過原點(diǎn)時(shí),求的解析式;
(Ⅱ)若在無極值點(diǎn),求a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知為偶函數(shù),曲線過點(diǎn)(2,5), .
(1)若曲線有斜率為0的切線,求實(shí)數(shù)的取值范圍;
(2)若當(dāng)時(shí)函數(shù)取得極值,確定的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
若函數(shù)在和處取得極值,試求的值;
在(1)的條件下,當(dāng)時(shí),恒成立,求c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知實(shí)數(shù),函數(shù).
(Ⅰ)若函數(shù)有極大值32,求實(shí)數(shù)的值;
(Ⅱ)若對,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)的導(dǎo)數(shù)為,若函數(shù)的圖像關(guān)于直對稱,且. (1)求實(shí)數(shù)的值 ;(2)求函數(shù)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=lnx-.
(1)當(dāng)時(shí),判斷f(x)在定義域上的單調(diào)性;
(2)若f(x)在[1,e]上的最小值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)討論函數(shù)在定義域內(nèi)的極值點(diǎn)的個(gè)數(shù);
(2)若函數(shù)在處取得極值,對,恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com