3.若命題p:?x∈R,x2+2ax+1≥0是真命題,則實(shí)數(shù)a的取值范圍是[-1,1].

分析 命題p:?x∈R,x2+2ax+1≥0是真命題,可得△≤0.

解答 解:命題p:?x∈R,x2+2ax+1≥0是真命題,∴△=4a2-4≤0,化為:a2-1≤0,解得-1≤a≤1.
則實(shí)數(shù)a的取值范圍是[-1,1].
故答案為:[-1,1].

點(diǎn)評(píng) 本題考查了二次函數(shù)的性質(zhì)、不等式的解法、復(fù)合命題的應(yīng)用,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)f(x)=$\left\{\begin{array}{l}4x-{x^2},x≥0\\ \frac{3}{x},x<0\end{array}$,若函數(shù)g(x)=|f(x)|-3x+b有三個(gè)零點(diǎn),則實(shí)數(shù)b的取值范圍為$(-∞,-6)∪(-\frac{1}{4},0]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如圖,已知$\overrightarrow{AB}=a$,$\overrightarrow{AC}=b$,$\overrightarrow{DC}=3\overrightarrow{BD}$,$\overrightarrow{AE}=2\overrightarrow{EC}$,則$\overrightarrow{DE}$=( 。
A.$\frac{3}{4}b-\frac{1}{3}a$B.$\frac{5}{12}a-\frac{3}{4}b$C.$\frac{3}{4}a-\frac{1}{3}b$D.$\frac{5}{12}b-\frac{3}{4}a$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.從集合{2,3,4,5}中隨機(jī)抽取一個(gè)數(shù)a,從集合{4,6,8}中隨機(jī)抽取一個(gè)數(shù)b,則向量$\overrightarrow{m}$=(a,b)與向量$\overrightarrow{n}$=(-2,1)垂直的概率為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知sin2α=$\frac{1}{4}$,則${sin^2}(α+\frac{π}{4})$=(  )
A.$\frac{3}{4}$B.$\frac{3}{8}$C.$\frac{5}{8}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率為$\frac{\sqrt{2}}{2}$,右焦點(diǎn)為F,上頂點(diǎn)為A,且△AOF的面積為$\frac{1}{2}$(O為坐標(biāo)原點(diǎn)).
(1)求橢圓C的方程;
(2)若點(diǎn)M在以橢圓C的短軸為直徑的圓上,且M在第一象限,過M作此圓的切線交橢圓于P,Q兩點(diǎn).試問△PFQ的周長是否為定值?若是,求此定值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.某班級(jí)為了進(jìn)行戶外拓展游戲,組成紅、藍(lán)、黃3個(gè)小隊(duì).甲、乙兩位同學(xué)各自等可能地選擇其中一個(gè)小隊(duì),則他們選到同一小隊(duì)的概率為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在四邊形ABCD中,AB=2.若$\overrightarrow{DA}=\frac{1}{2}(\overrightarrow{CA}+\overrightarrow{CB})$,則$\overrightarrow{AB}•\overrightarrow{DC}$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{x+2y-2≥0}\\{x-y+3≥0}\\{3x+2y-6≤0}\end{array}\right.$,若?x、y使得2x-y<m,則實(shí)數(shù)m的取值范圍是m>-$\frac{13}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案