已知函數(shù)f(x)=2cos2(x-
π
4
)-
3
cos2x+1,x∈[
π
4
,
π
2
]
(Ⅰ)求f(x)的最大值和最小值;
(Ⅱ)若對任意實數(shù)x,不等式|f(x)-m|<2在x∈[
π
4
,
π
2
]上恒成立,求實數(shù)m的取值范圍.
考點:三角函數(shù)中的恒等變換應(yīng)用
專題:三角函數(shù)的求值,三角函數(shù)的圖像與性質(zhì)
分析:(Ⅰ)降冪后利用兩角差的正弦函數(shù)化積,然后利用x的取值范圍求得函數(shù)的最大值和最小值;
(Ⅱ)不等式|f(x)-m|<2在x∈[
π
4
,
π
2
]上恒成立,轉(zhuǎn)化為m-2<f(x)<m+2在x∈[
π
4
,
π
2
]上恒成立,進一步轉(zhuǎn)化為m-2,m+2與函數(shù)f(x)在x∈[
π
4
,
π
2
]上的最值的關(guān)系,列不等式后求得實數(shù)m的取值范圍.
解答: 解:(I)f(x)=2cos2(x-
π
4
)-
3
cos2x+1
=cos(2x-
π
2
)-
3
cos2x+2

=sin2x-
3
cos2x+2

=2(
1
2
sin2x-
3
2
cos2x)+2

=2(sin2xcos
π
3
-cos2xsin
π
3
)+2

=2sin(2x-
π
3
)+2

∵x∈[
π
4
π
2
],∴2x-
π
3
∈[
π
6
,
3
]
,
∴當(dāng)2x-
π
3
=
π
6
,即x=
π
4
時,fmin(x)=3.
當(dāng)2x-
π
3
=
π
2
,即x=
12
時,fmax(x)=4;
(II)|f(x)-m|<2?m-2<f(x)<m+2,
∵對任意實數(shù)x,不等式|f(x)-m|<2在x∈[
π
4
,
π
2
]上恒成立,
m-2<fmin(x)
m+2>fmax(x)
,即
m-2<3
m+2>4
,解得:2<m<5.
故m的取值范圍為(2,5).
點評:本題考查了三角函數(shù)倍角公式,兩角差的正弦公式,考查了三角函數(shù)最值的求法,考查了數(shù)學(xué)轉(zhuǎn)化思想方法,關(guān)鍵是把不等式恒成立問題轉(zhuǎn)化為含m的代數(shù)式與f(x)的最值關(guān)系問題,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知F是拋物線y2=8x的焦點,A,B是該拋物線上的兩點,|AF|+|BF|=12,則線段AB中點到y(tǒng)軸的距離為(  )
A、16B、6C、8D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若log2a<0,(
1
2
b>1,求a,b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c∈(0,+∞),求證:(
a
a+b
)•(
b
b+c
)•(
c
c+a
)≤
1
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面為正方形,PC與底面ABCD垂直,圖為該四棱錐的主視圖和左視圖,它們是腰長為6cm的全等的等腰直角三角形.
(Ⅰ)根據(jù)圖所給的主視圖、左視圖,畫出相應(yīng)的俯視圖,并求出該俯視圖的面積;
(Ⅱ)求PA的長

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
cos(
π
2
-x)-sin(
2
+x)
sin(2π+x)+cos(π-x)
=3.
(1)求tanx的值;
(2)若x是第三象限角,求
1+sinx
1-sinx
-
1-sinx
1+sinx
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)=
2x
a
-
a
2x
(a>0)
有一個零點為0.
(Ⅰ)求實數(shù)a的值;
(Ⅱ)判斷f(x)的奇偶性;
(Ⅲ)判斷f(x)在(0,+∞)上的單調(diào)性,并用定義法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=x2-2|x|-1的單調(diào)性并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

我們把具有公共焦點、公共對稱軸的兩段圓錐曲線弧合成的封閉曲線稱為“盾圓”.如圖,“盾圓C”是由橢圓
x2
a2
+
y2
b2
=1(a>b>0)
與拋物線y2=4x中兩段曲線弧合成,F(xiàn)1、F2為橢圓的左、右焦點,F(xiàn)2(1,0),A為橢圓與拋物線的一個公共點,|AF2|=
5
2

(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在過F2的一條直線l,與“盾圓C”依次交于M、N、G、H四點,使得△F1MH與△F1NG的面積比為6:5?若存在,求出直線l方程;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案