分析 利用還是偶函數(shù),利用三角函數(shù)的基本關(guān)系式,化簡所求的表達式,換元法令t=sinx+cosx,通過二次函數(shù)的性質(zhì),從而求函數(shù)的最值.
解答 解:函數(shù)f(x)=x2+(a2+b2-9)x+a+b+ab為偶函數(shù),可得a2+b2=9,
函數(shù)的圖象與y軸交點的縱坐標(biāo)為:a+b+ab,令a=3sinx,b=3cosx,
a+b+ab=3sinx+3cosx+9sinxcosx,
令t=sinx+cosx=$\sqrt{2}$sin(x+$\frac{π}{4}$),
則-$\sqrt{2}$≤t≤$\sqrt{2}$,t2=1+2sinxcosx,
則sinxcosx=$\frac{{t}^{2}-1}{2}$,
則f(x)=3sinx+3cosx+9sinxcosx
=3t+9$\frac{{t}^{2}-1}{2}$=$\frac{9}{2}$(t2+$\frac{2}{3}$t-1)
=$\frac{9}{2}$(t+$\frac{1}{3}$)2-5;
∵-$\sqrt{2}$≤t≤$\sqrt{2}$,
∴-5≤$\frac{9}{2}$(t+$\frac{1}{3}$)2-5≤$3\sqrt{2}+\frac{9}{4}$;
故函數(shù)的圖象與y軸交點的縱坐標(biāo)的最大值與最小值:3$\sqrt{2}$-$\frac{11}{4}$.
故答案為:3$\sqrt{2}$-$\frac{11}{4}$.
點評 本題考查了換元法與配方法求函數(shù)的值域,考查轉(zhuǎn)化思想的應(yīng)用,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 60° | C. | 90° | D. | 120° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
分組 | 頻數(shù) | 頻率 |
50.5~60.5 | 4 | 0.08 |
60.5~70.5 | 0.16 | |
70.5~80.5 | 10 | |
80.5~90.5 | 16 | 0.32 |
90.5~100.5 | ||
合計 | 50 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1.4 | B. | 3.0 | C. | 3.6 | D. | 4.5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=±x | B. | y=±$\sqrt{2}$x | C. | y=±2x | D. | y=±$\frac{\sqrt{2}}{2}$x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\frac{\sqrt{5}}{2}$ | C. | 2$\sqrt{2}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com