【題目】某產(chǎn)品的廣告費用x與銷售額y的統(tǒng)計數(shù)據(jù)如下表
廣告費用x(萬元) | 4 | 2 | 3 | 5 |
銷售額y(萬元) | 49 | 26 | 39 | 54 |
根據(jù)上表可得回歸方程 = x+ 的 為9.4,據(jù)此模型預報廣告費用為6萬元時銷售額為( )
A.63.6萬元
B.65.5萬元
C.67.7萬元
D.72.0萬元
科目:高中數(shù)學 來源: 題型:
【題目】下列命題中,真命題是( )
A.若 與 互為負向量,則 + =0
B.若 =0,則 = 或 =
C.若 , 都是單位向量,則 =1
D.若k為實數(shù)且k = ,則k=0或 =
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某省的一個氣象站觀測點在連續(xù)4天里記錄的指數(shù)與當天的空氣水平可見度(單位: )的情況如表1:
700 | ||||
0.5 | 3.5 | 6.5 | 9.5 |
該省某市2017年9月指數(shù)頻數(shù)分布如表2:
頻數(shù) | 3 | 6 | 12 | 6 | 3 |
(1)設,根據(jù)表1的數(shù)據(jù),求出關于的線性回歸方程;
(2)小李在該市開了一家洗車店,經(jīng)統(tǒng)計,洗車店平均每天的收入與指數(shù)有相關關系,如表3:
日均收入(元) |
根據(jù)表3估計小李的洗車店9月份平均每天的收入.
(附參考公式: ,其中, )
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ax+ (其中a,b為常數(shù))的圖象經(jīng)過(1,2),(2, )兩點.
(1)求函數(shù)f(x)的解析式;
(2)判斷f(x)的奇偶性.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an} 的前n項和Sn=3n2+8n,{bn}是等差數(shù)列,且an=bn+bn+1
(1)求數(shù)列{bn}的通項公式;
(2)令cn= ,求數(shù)列{cn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)試討論的單調(diào)性;
(2)若(實數(shù)c是與a無關的常數(shù)),當函數(shù)有三個不同的零點時,a的取值范圍恰好是,求c的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)是定義在R上的奇函數(shù),當x≥0時f(x)=2x﹣x2 ,
(1)求f(x)的表達式;
(2)設0<a<b,當x∈[a,b]時,f(x)的值域為 ,求a,b的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,正三棱柱的底面邊長為2, 是側(cè)棱的中點.
(1)證明:平面平面;
(2)若平面與平面所成銳角的大小為,求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)g(x)=ax2﹣2ax+1+b(a>0)在區(qū)間[2,3]上有最大值4和最小值1.設f(x)= .
(1)求a、b的值;
(2)若不等式f(2x)﹣k2x≥0在x∈[﹣1,1]上恒成立,求實數(shù)k的取值范圍;
(3)若f(|2x﹣1|)+k ﹣3k=0有三個不同的實數(shù)解,求實數(shù)k的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com