已知函數(shù),若的最大值為1.
(1)求的值,并求的單調遞增區(qū)間;
(2)在中,角、、的對邊、、,若,且,試判斷三角形的形狀.

(1)1,;(2)直角三角形.

解析試題分析:(1)求三角函數(shù)周期、對稱軸、單調區(qū)間、最值等問題,通常將所給函數(shù)轉化為形式再求解;(2)由求出角B,將利用正弦定理化為角的關系式,求出角的值。
試題解析:(1) ,.
,得單調增區(qū)間為
(2)因為,則,
,則,
,得,所以,所以,故為直角三角形.
考點:單調性,化為形式,正弦定理.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)為偶函數(shù),周期為2.
(Ⅰ)求的解析式;
(Ⅱ)若的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù) 的圖象過點(0, ),最小正周期為 ,且最小值為-1.
(1)求函數(shù)的解析式.
(2)若 ,的值域是 ,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(1)設扇形的周長是定值為,中心角.求證:當時該扇形面積最大;
(2)設.求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知
(1)求的值;
(2)求的值;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知,其中
(1)求函數(shù)的最小正周期,并從下列的變換中選擇一組合適變換的序號,經(jīng)過這組變換的排序,可以把函數(shù)的圖像變成的圖像;(要求變換的先后順序)
①縱坐標不變,橫坐標變?yōu)樵瓉淼?img src="http://thumb.1010pic.com/pic5/tikupic/e8/b/1ihla4.png" style="vertical-align:middle;" />倍,
②縱坐標不變,橫坐標變?yōu)樵瓉淼?倍,
③橫坐標不變,縱坐標變?yōu)樵瓉淼?img src="http://thumb.1010pic.com/pic5/tikupic/8f/9/1bzla2.png" style="vertical-align:middle;" />倍,
④橫坐標不變,縱坐標變?yōu)樵瓉淼?img src="http://thumb.1010pic.com/pic5/tikupic/fb/3/inxms1.png" style="vertical-align:middle;" />倍,
⑤向上平移一個單位,
⑥向下平移一個單位,
⑦向左平移個單位,
⑧向右平移個單位,
⑨向左平移個單位,
⑩向右平移個單位,
(2)在中角對應邊分別為,求的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

中,角所對的邊分別為,且.
(Ⅰ)求函數(shù)的最大值;
(Ⅱ)若,,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知向量,設函數(shù).
的最小正周期與單調遞增區(qū)間;
中,分別是角的對邊,若,的面積為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知向量,,且的最小正周期為
(Ⅰ)求的值;
(Ⅱ)若,解方程
(Ⅲ)在中,,,且為銳角,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案