以原點(diǎn)為中心,焦點(diǎn)在y軸上的雙曲線C的一個(gè)焦點(diǎn)為,一個(gè)頂點(diǎn)為,則雙曲線C的方程為(    )

A.   B.   C.   D.

 

【答案】

C

【解析】

試題分析:∵雙曲線C的一個(gè)焦點(diǎn)為,一個(gè)頂點(diǎn)為,∴,

,∴雙曲線C的方程為.

考點(diǎn):1.雙曲線的標(biāo)準(zhǔn)方程;2.雙曲線的焦點(diǎn)、頂點(diǎn).

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面內(nèi)與兩定點(diǎn)A(2,0),B(-2,0)連線的斜率之積等于-
1
4
的點(diǎn)P的軌跡為曲線C1,橢圓C2以坐標(biāo)原點(diǎn)為中心,焦點(diǎn)在y軸上,離心率為
5
5

(Ⅰ)求C1的方程;
(Ⅱ)若曲線C1與C2交于M、N、P、Q四點(diǎn),當(dāng)四邊形MNPQ面積最大時(shí),求橢圓C2的方程及此四邊形的最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年河北唐山市高三年級(jí)第一學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

是以原點(diǎn)為中心,焦點(diǎn)在軸上的等軸雙曲線在第一象限部分,曲線在點(diǎn)P處的切線分別交該雙曲線的兩條漸近線于兩點(diǎn),則(    )

A.          B.

C.    D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知平面內(nèi)與兩定點(diǎn)A(2,0),B(-2,0)連線的斜率之積等于-
1
4
的點(diǎn)P的軌跡為曲線C1,橢圓C2以坐標(biāo)原點(diǎn)為中心,焦點(diǎn)在y軸上,離心率為
5
5

(Ⅰ)求C1的方程;
(Ⅱ)若曲線C1與C2交于M、N、P、Q四點(diǎn),當(dāng)四邊形MNPQ面積最大時(shí),求橢圓C2的方程及此四邊形的最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年云南省昆明市高三(上)摸底調(diào)研數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知平面內(nèi)與兩定點(diǎn)A(2,0),B(-2,0)連線的斜率之積等于的點(diǎn)P的軌跡為曲線C1,橢圓C2以坐標(biāo)原點(diǎn)為中心,焦點(diǎn)在y軸上,離心率為
(Ⅰ)求C1的方程;
(Ⅱ)若曲線C1與C2交于M、N、P、Q四點(diǎn),當(dāng)四邊形MNPQ面積最大時(shí),求橢圓C2的方程及此四邊形的最大面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案