1.已知命題P:“?x>0,ex>x+1”,則¬P為(  )
A.?x≤0,ex≤x+1B.?x≤0,ex>x+1C.?x>0,ex≤x+1D.?x>0,ex≤x+1

分析 由已知中的原命題,結(jié)合全稱命題否定的定義,可得答案.

解答 解:∵命題P:“?x>0,ex>x+1”,
∴¬P為:“?x>0,ex≤x+1”,
故選:C

點(diǎn)評 本題考查的知識點(diǎn)是全稱命題的否定,難度不大,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.兩個點(diǎn)M(2,-4),N(-2,1)與圓C:x2+y2-2x+4y-4=0的位置關(guān)系是( 。
A.點(diǎn)M在圓C外,點(diǎn)N在圓C外B.點(diǎn)M在圓C內(nèi),點(diǎn)N在圓C外
C.點(diǎn)M在圓C外,點(diǎn)N在圓C內(nèi)D.點(diǎn)M在圓C內(nèi),點(diǎn)N在圓C內(nèi)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知橢圓C:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0)的上下兩個焦點(diǎn)分別為F1,F(xiàn)2,過點(diǎn)F1與y軸垂直的直線交橢圓C于M,N兩點(diǎn),△MNF2的面積為$\sqrt{3}$,橢圓C的離心率為$\frac{\sqrt{3}}{2}$
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)已知O為坐標(biāo)原點(diǎn),直線l:y=kx+m與y軸交于點(diǎn)P,與橢圓C交于A,B兩個不同的點(diǎn),若存在實(shí)數(shù)λ,使得$\overrightarrow{OA}$+λ$\overrightarrow{OB}$=4$\overrightarrow{OP}$,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列說法錯誤的是( 。
A.經(jīng)過一條直線和這條直線外一點(diǎn),有且只有一個平面
B.經(jīng)過兩條相交直線,有且只有一個平面
C.平面α與平面β相交,它們只有有限個公共點(diǎn)
D.如果兩個平面有三個不共線的公共點(diǎn),那么這兩個平面重合

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若關(guān)于x的不等式|x+1|-|x-2|>a2+2a有實(shí)數(shù)解,則實(shí)數(shù)a的取值范圍為( 。
A.(-3,1)B.(-1,3)C.(-∞,-3)∪(1,+∞)D.(-∞,-1)∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)p:方程x2+mx+1=0有兩個不等的實(shí)根,q:不等式4x2+4(m-2)x+1>0在R上恒成立,若¬p為真,p∨q為真,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知g(x)=x2-2ax+1在區(qū)間[1,3]上的值域[0,4].
(1)求a的值;
(2)若不等式g(2x)-k•4x≥0在x∈[1,+∞)上恒成立,求實(shí)數(shù)k的取值范圍;
(3)若函數(shù)$y=\frac{{g(|{2^x}-1|)}}{{|{2^x}-1|}}+k•\frac{2}{{|{2^x}-1|}}-3k$有三個零點(diǎn),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)橢圓C1的中心和拋物線C2的頂點(diǎn)均為原點(diǎn)O,C1、C2的焦點(diǎn)均在x軸上,在C1、C2上各取兩個點(diǎn),將其坐標(biāo)記錄于表格中:
(1)求C1、C2的標(biāo)準(zhǔn)方程;
(2)過C2的焦點(diǎn)F作斜率為k的直線l,與C2交于A、B兩點(diǎn),若l與C1交于C、D兩點(diǎn),若$\frac{|AB|}{|CD|}=\frac{5}{3}$,求直線l的方程
x3-24$\sqrt{3}$
y$-2\sqrt{3}$0-4$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.函數(shù)$f(x)=\frac{{\sqrt{{{log}_{\frac{1}{2}}}({4x-3})}}}{x-1}$的定義域?yàn)椋?\frac{3}{4}$,1).

查看答案和解析>>

同步練習(xí)冊答案